Python|用列的平均值替换 NaN 值
在机器学习和数据分析中,数据可视化是最重要的步骤之一。清理和排列数据是由不同的算法完成的。有时在数据集中,我们会得到无法用于数据可视化的 NaN(不是数字)值。
为了解决这个问题,一种可能的方法是用列的平均值替换nan值。下面给出了一些解决这个问题的方法。
方法 #1:使用np.colmean
和np.take
# Python code to demonstrate
# to replace nan values
# with an average of columns
import numpy as np
# Initialising numpy array
ini_array = np.array([[1.3, 2.5, 3.6, np.nan],
[2.6, 3.3, np.nan, 5.5],
[2.1, 3.2, 5.4, 6.5]])
# printing initial array
print ("initial array", ini_array)
# column mean
col_mean = np.nanmean(ini_array, axis = 0)
# printing column mean
print ("columns mean", str(col_mean))
# find indices where nan value is present
inds = np.where(np.isnan(ini_array))
# replace inds with avg of column
ini_array[inds] = np.take(col_mean, inds[1])
# printing final array
print ("final array", ini_array)
输出:
initial array [[ 1.3 2.5 3.6 nan]
[ 2.6 3.3 nan 5.5]
[ 2.1 3.2 5.4 6.5]]
columns mean [ 2. 3. 4.5 6. ]
final array [[ 1.3 2.5 3.6 6. ]
[ 2.6 3.3 4.5 5.5]
[ 2.1 3.2 5.4 6.5]]
方法 #2:使用np.ma
和np.where
# Python code to demonstrate
# to replace nan values
# with average of columns
import numpy as np
# Initialising numpy array
ini_array = np.array([[1.3, 2.5, 3.6, np.nan],
[2.6, 3.3, np.nan, 5.5],
[2.1, 3.2, 5.4, 6.5]])
# printing initial array
print ("initial array", ini_array)
# replace nan with col means
res = np.where(np.isnan(ini_array), np.ma.array(ini_array,
mask = np.isnan(ini_array)).mean(axis = 0), ini_array)
# printing final array
print ("final array", res)
输出:
initial array [[ 1.3 2.5 3.6 nan]
[ 2.6 3.3 nan 5.5]
[ 2.1 3.2 5.4 6.5]]
final array [[ 1.3 2.5 3.6 6. ]
[ 2.6 3.3 4.5 5.5]
[ 2.1 3.2 5.4 6.5]]
方法 #3:使用 Naive 和zip
# Python code to demonstrate
# to replace nan values
# with average of columns
import numpy as np
# Initialising numpy array
ini_array = np.array([[1.3, 2.5, 3.6, np.nan],
[2.6, 3.3, np.nan, 5.5],
[2.1, 3.2, 5.4, 6.5]])
# printing initial array
print ("initial array", ini_array)
# indices where values is nan in array
indices = np.where(np.isnan(ini_array))
# Iterating over numpy array to replace nan with values
for row, col in zip(*indices):
ini_array[row, col] = np.mean(ini_array[
~np.isnan(ini_array[:, col]), col])
# printing final array
print ("final array", ini_array)
输出:
initial array [[ 1.3 2.5 3.6 nan]
[ 2.6 3.3 nan 5.5]
[ 2.1 3.2 5.4 6.5]]
final array [[ 1.3 2.5 3.6 6. ]
[ 2.6 3.3 4.5 5.5]
[ 2.1 3.2 5.4 6.5]]