Python中的 numpy.loadtxt()
Python中的numpy.load()
用于从文本文件中加载数据,旨在成为简单文本文件的快速阅读器。
请注意,文本文件中的每一行必须具有相同数量的值。
Syntax: numpy.loadtxt(fname, dtype=’float’, comments=’#’, delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0)
Parameters:
fname : File, filename, or generator to read. If the filename extension is .gz or .bz2, the file is first decompressed. Note that generators should return byte strings for Python 3k.
dtype : Data-type of the resulting array; default: float. If this is a structured data-type, the resulting array will be 1-dimensional, and each row will be interpreted as an element of the array.
delimiter : The string used to separate values. By default, this is any whitespace.
converters : A dictionary mapping column number to a function that will convert that column to a float. E.g., if column 0 is a date string: converters = {0: datestr2num}. Default: None.
skiprows : Skip the first skiprows lines; default: 0.
Returns: ndarray
代码#1:
# Python program explaining
# loadtxt() function
import numpy as geek
# StringIO behaves like a file object
from io import StringIO
c = StringIO("0 1 2 \n3 4 5")
d = geek.loadtxt(c)
print(d)
输出 :
[[ 0. 1. 2.]
[ 3. 4. 5.]]
代码#2:
# Python program explaining
# loadtxt() function
import numpy as geek
# StringIO behaves like a file object
from io import StringIO
c = StringIO("1, 2, 3\n4, 5, 6")
x, y, z = geek.loadtxt(c, delimiter =', ', usecols =(0, 1, 2),
unpack = True)
print("x is: ", x)
print("y is: ", y)
print("z is: ", z)
输出 :
x is: [ 1. 4.]
y is: [ 2. 5.]
z is: [ 3. 6.]
代码#3:
# Python program explaining
# loadtxt() function
import numpy as geek
# StringIO behaves like a file object
from io import StringIO
d = StringIO("M 21 72\nF 35 58")
e = geek.loadtxt(d, dtype ={'names': ('gender', 'age', 'weight'),
'formats': ('S1', 'i4', 'f4')})
print(e)
输出 :
[(b'M', 21, 72.) (b'F', 35, 58.)]