📜  Python中的 numpy.nanquantile()

📅  最后修改于: 2022-05-13 01:55:46.198000             🧑  作者: Mango

Python中的 numpy.nanquantile()

numpy.nanquantile(arr, q, axis = None)计算给定数据(数组元素)沿指定轴的第 q分位数,忽略 nan 值。

当处理正态分布时,分位数在统计中起着非常重要的作用。

在上图中, Q2是正态分布数据的medianQ3 - Q2表示给定数据集的分位数范围

代码#1:

# Python Program illustrating 
# numpy.nanquantile() method  
import numpy as np 
      
# 1D array 
arr = [20, 2, 7, np.nan, 34] 
print("arr : ", arr) 
  
print("\n-Q1 quantile of arr : ", np.quantile(arr, .50)) 
print("Q2 - quantile of arr : ", np.quantile(arr, .25)) 
print("Q3 - quantile of arr : ", np.quantile(arr, .75)) 
  
print("\nQ1 - nanquantile of arr : ", np.nanquantile(arr, .50)) 
print("Q2 - nanquantile of arr : ", np.nanquantile(arr, .25)) 
print("Q3 - nanquantile of arr : ", np.nanquantile(arr, .75)) 

输出 :

arr : [20, 2, 7, nan, 34]

Q1 - quantile of arr : nan
Q2 - quantile of arr : nan
Q3 - quantile of arr : nan

Q1 - nanquantile of arr : 13.5
Q2 - nanquantile of arr : 5.75
Q3 - nanquantile of arr : 23.5


代码#2:

# Python Program illustrating 
# numpy.nanquantile() method 
  
import numpy as np 
  
# 2D array 
arr = [[14, np.nan, 12, 33, 44], 
       [15, np.nan, 27, 8, 19], 
       [23, 2, np.nan, 1, 4, ]] 
print("\narr : \n", arr) 
      
# quantile of the flattened array 
print("\nQ2 quantile of arr, axis = None : ", np.quantile(arr, .50)) 
print("\nQ2 quantile of arr, axis = None : ", np.nanquantile(arr, .50)) 
print("0th quantile of arr, axis = None : ", np.nanquantile(arr, 0)) 

输出:

arr : 
[[14, nan, 12, 33, 44], [15, nan, 27, 8, 19], [23, 2, nan, 1, 4]]

Q2 quantile of arr, axis = None : nan
Q2 quantile of arr, axis = None : 14.5
0th quantile of arr, axis = None : 1.0


代码#3:

# Python Program illustrating 
# numpy.nanquantile() method 
import numpy as np 
  
# 2D array 
arr = [[14, np.nan, 12, 33, 44], 
    [15, np.nan, 27, 8, 19], 
    [23, 2, np.nan, 1, 4, ]] 
print("\narr : \n", arr) 
          
# quantile along the axis = 0 
print("\nQ2 quantile of arr, axis = 0 : ", np.nanquantile(arr, .50, axis = 0)) 
print("0th quantile of arr, axis = 0 : ", np.nanquantile(arr, 0, axis = 0)) 
  
# quantile along the axis = 1 
print("\nQ2 quantile of arr, axis = 1 : ", np.nanquantile(arr, .50, axis = 1)) 
print("0th quantile of arr, axis = 1 : ", np.nanquantile(arr, 0, axis = 1)) 
  
print("\nQ2 quantile of arr, axis = 1 : \n",
  np.nanquantile(arr, .50, axis = 1, keepdims = True)) 
print("\n0th quantile of arr, axis = 1 : \n",
    np.nanquantile(arr, 0, axis = 1, keepdims = True)) 

输出:

arr : 
[[14, nan, 12, 33, 44], [15, nan, 27, 8, 19], [23, 2, nan, 1, 4]]

Q2 quantile of arr, axis = 0 : [15.  2. 19.5  8.  19. ]
0th quantile of arr, axis = 0 : [14. 2. 12.  1.  4.]

Q2 quantile of arr, axis = 1 : [23.5 17.   3. ]
0th quantile of arr, axis = 1 : [12.  8.  1.]

Q2 quantile of arr, axis = 1 : 
[[23.5]
[17. ]
[ 3. ]]

0th quantile of arr, axis = 1 : 
[[12.]
[ 8.]
[ 1.]]