Python中的 Matplotlib.axes.Axes.acorr()
Matplotlib是Python中的一个库,它是 NumPy 库的数值数学扩展。 Axes 类包含大部分图形元素:Axis、Tick、Line2D、Text、Polygon 等,并设置坐标系。 Axes 的实例通过回调属性支持回调。
matplotlib.axes.Axes.acorr()函数
matplotlib 库的 axes 模块中的Axes.acorr()函数用于绘制 x 的自相关。
Syntax: Axes.acorr(self, x, *, data=None, **kwargs)
Parameters: This method accept the following parameters that are described below:
- x: This parameter is a sequence of scalar.
- detrend: This parameter is an optional parameter. Its default value is mlab.detrend_none
- normed: This parameter is also an optional parameter and contains the bool value. Its default value is True
- usevlines: This parameter is also an optional parameter and contains the bool value. Its default value is True
- maxlags: This parameter is also an optional parameter and contains the integer value. Its default value is 10
- linestyle: This parameter is also an optional parameter and used for plotting the data points, only when usevlines is False.
- marker: This parameter is also an optional parameter and contains the string. Its default value is ‘o’
Returns: This method returns the following:
- lags:This method returns the lag vector
- c:This method returns the auto correlation vector.
- line : Added LineCollection if usevlines is True, otherwise add Line2D.
- b: This method returns the horizontal line at 0 if usevlines is True, otherwise None.
The resultant is (lags, c, line, b).
下面的示例说明了 matplotlib.axes 中的 matplotlib.axes.Axes.acorr()函数:
示例 1:
# Implementation of matplotlib function
import matplotlib.pyplot as plt
import numpy as np
# Time series data
geeks = np.array([24.40, 110.25, 20.05,
22.00, 61.90, 7.80,
15.00, 22.80, 34.90,
57.30])
# Plot autocorrelation
fig, ax = plt.subplots()
ax.acorr(geeks, maxlags = 9)
# Add labels to autocorrelation
# plotax.xlabel('X-axis')
ax.set_ylabel('Y-axis')
ax.set_title('matplotlib.axes.Axes.acorr() Example')
plt.show()
输出:
示例 2:
# Implementation of matplotlib function
import matplotlib.pyplot as plt
import numpy as np
# Fixing random state for reproducibility
np.random.seed(10**7)
geeks = np.random.randn(100)
fig, ax = plt.subplots()
ax.acorr(geeks, usevlines = True, normed = True,
maxlags = 80, lw = 3)
ax.grid(True)
ax.set_title('matplotlib.axes.Axes.acorr() Example')
plt.show()
输出: