使用 NumPy 在Python中展平矩阵
让我们讨论如何在Python中使用 NumPy 展平矩阵。通过使用ndarray.flatten()函数,我们可以在Python中将矩阵展平为一维。
Syntax:numpy_array.flatten(order=’C’)
- order:‘C’ means to flatten in row-major.’F’ means to flatten in column-major.’A’ means to flatten in column-major order if a is Fortran contiguous in memory, row-major order otherwise.’K’ means to flatten a in the order the elements occur in memory. The default is ‘C’.
Return:Flattened 1-D matrix
示例 1:
python3
# importing numpy as np
import numpy as np
# declare matrix with np
gfg = np.array([[2, 3], [4, 5]])
# using array.flatten() method
flat_gfg = gfg.flatten()
print(flat_gfg)
python3
# importing numpy as np
import numpy as np
# declare matrix with np
gfg = np.array([[6, 9], [8, 5], [18, 21]])
# using array.flatten() method
gfg.flatten()
python3
# importing numpy as np
import numpy as np
# declare matrix with np
gfg = np.array([[6, 9, 12], [8, 5, 2], [18, 21, 24]])
# using array.flatten() method
flat_gfg = gfg.flatten(order='A')
print(flat_gfg)
输出:
[2 3 4 5]
示例 2:
蟒蛇3
# importing numpy as np
import numpy as np
# declare matrix with np
gfg = np.array([[6, 9], [8, 5], [18, 21]])
# using array.flatten() method
gfg.flatten()
输出:
array([ 6, 9, 8, 5, 18, 21])
示例 3:
蟒蛇3
# importing numpy as np
import numpy as np
# declare matrix with np
gfg = np.array([[6, 9, 12], [8, 5, 2], [18, 21, 24]])
# using array.flatten() method
flat_gfg = gfg.flatten(order='A')
print(flat_gfg)
输出:
[ 6, 9, 12, 8, 5, 2, 18, 21, 24]