使用 NumPy 计算矩阵的逆
矩阵的逆只是矩阵的倒数,就像我们在普通算术中对单个数字所做的那样,该数字用于求解方程以找到未知变量的值。矩阵的逆矩阵是与原始矩阵相乘时将作为单位矩阵的矩阵。只有当矩阵是非奇异的,即行列式不应该是 0时,矩阵的逆才存在。使用行列式和伴随,我们可以很容易地使用下面的公式找到方阵的逆,
if det(A) != 0
A-1 = adj(A)/det(A)
else
"Inverse doesn't exist"
矩阵方程
where,
A-1: The inverse of matrix A
x: The unknown variable column
B: The solution matrix
我们可以使用函数numpy.linalg.inv(array) 找出任何方阵的逆。
Syntax: numpy.linalg.inv(a)
Parameters:
a: Matrix to be inverted
Returns: Inverse of the matrix a.
示例 1:
Python3
# Importing Library
import numpy as np
# Finding an inverse of given array
arr = np.array([[1, 2], [5, 6]])
inverse_array = np.linalg.inv(arr)
print("Inverse array is ")
print(inverse_array)
print()
# inverse of 3X3 matrix
arr = np.array([[1, 2, 3],
[4, 9, 6],
[7, 8, 9]])
inverse_array = np.linalg.inv(arr)
print("Inverse array is ")
print(inverse_array)
print()
# inverse of 4X4 matrix
arr = np.array([[1, 2, 3, 4],
[10, 11, 14, 25],
[20, 8, 7, 55],
[40, 41, 42, 43]])
inverse_array = np.linalg.inv(arr)
print("Inverse array is ")
print(inverse_array)
print()
# inverse of 1X1 matrix
arr = np.array([[1]])
inverse_array = np.linalg.inv(arr)
print("Inverse array is ")
print(inverse_array)
Python3
# Import required package
import numpy as np
# Inverses of several matrices can
# be computed at once
A = np.array([[[1., 2.], [3., 4.]],
[[1, 3], [3, 5]]])
# Calculating the inverse of the matrix
print(np.linalg.inv(A))
输出:
Inverse array is
[[-1.5 0.5 ]
[ 1.25 -0.25]]
Inverse array is
[[-0.6875 -0.125 0.3125 ]
[-0.125 0.25 -0.125 ]
[ 0.64583333 -0.125 -0.02083333]]
Inverse array is
[[-15.07692308 4.9 -0.8 -0.42307692]
[ 32.48717949 -10.9 1.8 1.01282051]
[-20.84615385 7.1 -1.2 -0.65384615]
[ 3.41025641 -1.1 0.2 0.08974359]]
Inverse array is
[[1.]]
示例 2:
Python3
# Import required package
import numpy as np
# Inverses of several matrices can
# be computed at once
A = np.array([[[1., 2.], [3., 4.]],
[[1, 3], [3, 5]]])
# Calculating the inverse of the matrix
print(np.linalg.inv(A))
输出:
[[[-2. 1. ]
[ 1.5 -0.5 ]]
[[-1.25 0.75]
[ 0.75 -0.25]]]