如何在 R 中使用 Nrow函数?
在本文中,我们将讨论如何在 R 编程语言中使用 Nrow函数。此函数用于数据框或矩阵中以获取行数。
Syntax: nrow(data)
where, data can be a dataframe or a matrix.
示例 1:计算数据框中的行数
在此示例中,我们将计算数据框中的行数。
R
# create a dataframe with 4 rows
# and 3 columns
data=data.frame(col1 = c(1,2,3,4),
col2 = c(NA,NA,NA,NA),
col3 = c(23,45,43,NA))
# display
print(data)
# count the number of rows
print(nrow(data))
R
# create a dataframe with 4 rows and 3 columns
data = data.frame(col1 = c(1,2,3,4),
col2 = c(NA,NA,NA,NA),
col3 = c(23,45,43,NA))
# display
print(data)
# count the number of rows
# with condition column1 is greater than
# 3 and column3 is greater than 25
print(nrow(data[data$col1>3 & data$col3>25, ]))
# count the number of rows
# with condition column1 is greater than 3
# or column3 is greater than 25
print(nrow(data[data$col1>3 | data$col3>25, ]))
R
# create a dataframe with 4 rows and 3 columns
data = data.frame(col1 = c(1,2,3,4),
col2 = c(89,NA,NA,67),
col3 = c(23,45,43,NA))
# display
print(data)
# total rows in dataframe with no missing values
print(nrow(data[complete.cases(data), ]))
R
# create a dataframe with 4 rows and
# 3 columns
data = data.frame(col1 = c(1,2,3,4),
col2 = c(89,NA,NA,67),
col3 = c(23,45,43,NA))
# display
print(data)
# total rows in dataframe
# with no missing values in column1
print(nrow(data[is.na(data$col1), ]))
# total rows in dataframe
# with no missing values in column2
print(nrow(data[is.na(data$col2), ]))
# total rows in dataframe
# with no missing values in column3
print(nrow(data[is.na(data$col3), ]))
输出:
示例 2:计算数据框中有条件的行
在这里,我们将在 nrow()函数中指定条件。
Syntax: nrow(data[condition, ])
where,
- data is the input dataframe
- condition is used to get the rows.
R
# create a dataframe with 4 rows and 3 columns
data = data.frame(col1 = c(1,2,3,4),
col2 = c(NA,NA,NA,NA),
col3 = c(23,45,43,NA))
# display
print(data)
# count the number of rows
# with condition column1 is greater than
# 3 and column3 is greater than 25
print(nrow(data[data$col1>3 & data$col3>25, ]))
# count the number of rows
# with condition column1 is greater than 3
# or column3 is greater than 25
print(nrow(data[data$col1>3 | data$col3>25, ]))
输出:
示例 3:计算没有缺失值的行
在这里,我们将通过在 nrow 方法中使用 complete.cases() 来获取没有缺失值的总行数。
Syntax: nrow(data[complete.cases(data), ])
R
# create a dataframe with 4 rows and 3 columns
data = data.frame(col1 = c(1,2,3,4),
col2 = c(89,NA,NA,67),
col3 = c(23,45,43,NA))
# display
print(data)
# total rows in dataframe with no missing values
print(nrow(data[complete.cases(data), ]))
输出:
示例 4:计算特定列中缺失值的行
在这里,我们将使用 is.na() 方法计算特定列中丢失的行数。
Syntax: nrow(data[is.na(data$column_name), ])
where,
- data is the input dataframe
- column_name is the column to get missing value count
R
# create a dataframe with 4 rows and
# 3 columns
data = data.frame(col1 = c(1,2,3,4),
col2 = c(89,NA,NA,67),
col3 = c(23,45,43,NA))
# display
print(data)
# total rows in dataframe
# with no missing values in column1
print(nrow(data[is.na(data$col1), ]))
# total rows in dataframe
# with no missing values in column2
print(nrow(data[is.na(data$col2), ]))
# total rows in dataframe
# with no missing values in column3
print(nrow(data[is.na(data$col3), ]))
输出: