PyTorch 中的张量运算
在本文中,我们将讨论 PyTorch 中的张量运算。
PyTorch 是一个科学包,用于对给定数据(如Python中的张量)执行操作。张量是数据的集合,如 numpy 数组。我们可以使用张量函数创建张量:
Syntax: torch.tensor([[[element1,element2,.,element n],……,[element1,element2,.,element n]]])
where,
- torch is the module
- tensor is the function
- elements are the data
PyTorch 中应用于张量的操作是:
扩张()
该操作用于将张量展开为张量数、张量中的行数和张量中的列数。
Syntax: tensor.expand(n,r,c)
where,
- tensor is the input tensor
- n is to return the number of tensors
- r is the number of rows in each tensor
- c is the number of columns in each tensor
示例:在本例中,我们将张量展开为 4 个张量,每个张量中 2 行 3 列
Python3
# import module
import torch
# create a tensor with 2 data
# in 3 three elements each
data = torch.tensor([[10, 20, 30],
[45, 67, 89]])
# display
print(data)
# expand the tensor into 4 tensors , 2
# rows and 3 columns in each tensor
print(data.expand(4, 2, 3))
Python3
# import module
import torch
# create a tensor with 2 data
# in 3 three elements each
data = torch.tensor([[[10, 20, 30],
[45, 67, 89]]])
# display
print(data)
# permute the tensor first by row
print(data.permute(1, 2, 0))
# permute the tensor first by column
print(data.permute(2, 1, 0))
Python3
# import module
import torch
# create a tensor with 2 data in
# 3 three elements each
data = torch.tensor([[[10, 20, 30],
[45, 67, 89]]])
# display
print(data)
# convert the tensor to list
print(data.tolist())
Python3
# import module
import torch
# create a tensor with 2 data in
# 3 three elements each
data = torch.tensor([[10, 20, 30],
[45, 67, 89],
[23, 45, 67]])
# display
print(data)
# narrow the tensor
# with 1 dimension
# starting from 1 st index
# length of each dimension is 2
print(torch.narrow(data, 1, 1, 2))
# narrow the tensor
# with 1 dimension
# starting from 0 th index
# length of each dimension is 2
print(torch.narrow(data, 1, 0, 2))
Python3
# import module
import torch
# create a tensor with 3 data in
# 3 three elements each
data = torch.tensor([[[10, 20, 30],
[45, 67, 89],
[23, 45, 67]]])
# display
print(data)
# set the number 100 when the
# number in greater than 45
# otherwise 50
print(torch.where(data > 45, 100, 50))
# set the number 100 when the
# number in less than 45
# otherwise 50
print(torch.where(data < 45, 100, 50))
# set the number 100 when the number in
# equal to 23 otherwise 50
print(torch.where(data == 23, 100, 50))
输出:
tensor([[10, 20, 30],
[45, 67, 89]])
tensor([[[10, 20, 30],
[45, 67, 89]],
[[10, 20, 30],
[45, 67, 89]],
[[10, 20, 30],
[45, 67, 89]],
[[10, 20, 30],
[45, 67, 89]]])
置换()
这用于使用行和列重新排序张量
Syntax: tensor.permute(a,b,c)
where
- tensor is the input tensor
- permute(1,2,0) is used to permute the tensor by row
- permute(2,1,0) is used to permute the tensor by column
示例:在此示例中,我们将首先按行和按列排列张量。
Python3
# import module
import torch
# create a tensor with 2 data
# in 3 three elements each
data = torch.tensor([[[10, 20, 30],
[45, 67, 89]]])
# display
print(data)
# permute the tensor first by row
print(data.permute(1, 2, 0))
# permute the tensor first by column
print(data.permute(2, 1, 0))
输出:
tensor([[[10, 20, 30],
[45, 67, 89]]])
tensor([[[10],
[20],
[30]],
[[45],
[67],
[89]]])
tensor([[[10],
[45]],
[[20],
[67]],
[[30],
[89]]])
列表()
此方法用于从给定张量返回列表或嵌套列表。
Syntax: tensor.tolist()
示例:在此示例中,我们将把给定的张量转换为列表。
Python3
# import module
import torch
# create a tensor with 2 data in
# 3 three elements each
data = torch.tensor([[[10, 20, 30],
[45, 67, 89]]])
# display
print(data)
# convert the tensor to list
print(data.tolist())
输出:
tensor([[[10, 20, 30],
[45, 67, 89]]])
[[[10, 20, 30], [45, 67, 89]]]
狭窄的()
此函数用于缩小张量。换句话说,它将根据输入维度扩展张量。
Syntax: torch.narrow(tensor,d,i,l)
where,
- tensor is the input tensor
- d is the dimension to narrow
- i is the starting index of the vector
- l is the length of the new tensor along the dimension – d
示例:在本例中,我们将从第 1 个索引开始的 1 维张量进行缩小,每个维度的长度为 2,我们将从第 0个索引和长度开始的 1 维张量进行缩小每个维度为 2
Python3
# import module
import torch
# create a tensor with 2 data in
# 3 three elements each
data = torch.tensor([[10, 20, 30],
[45, 67, 89],
[23, 45, 67]])
# display
print(data)
# narrow the tensor
# with 1 dimension
# starting from 1 st index
# length of each dimension is 2
print(torch.narrow(data, 1, 1, 2))
# narrow the tensor
# with 1 dimension
# starting from 0 th index
# length of each dimension is 2
print(torch.narrow(data, 1, 0, 2))
输出:
tensor([[10, 20, 30],
[45, 67, 89],
[23, 45, 67]])
tensor([[20, 30],
[67, 89],
[45, 67]])
tensor([[10, 20],
[45, 67],
[23, 45]])
在哪里()
此函数用于通过有条件地检查现有张量来返回新张量。
Syntax: torch.where(condition,statement1,statement2)
where,
- condition is used to check the existing tensor condition by applying conditions on the existing tensors
- statememt1 is executed when condition is true
- statememt2 is executed when condition is false
示例:我们将使用不同的关系运算符来检查功能
Python3
# import module
import torch
# create a tensor with 3 data in
# 3 three elements each
data = torch.tensor([[[10, 20, 30],
[45, 67, 89],
[23, 45, 67]]])
# display
print(data)
# set the number 100 when the
# number in greater than 45
# otherwise 50
print(torch.where(data > 45, 100, 50))
# set the number 100 when the
# number in less than 45
# otherwise 50
print(torch.where(data < 45, 100, 50))
# set the number 100 when the number in
# equal to 23 otherwise 50
print(torch.where(data == 23, 100, 50))
输出:
tensor([[[10, 20, 30],
[45, 67, 89],
[23, 45, 67]]])
tensor([[[ 50, 50, 50],
[ 50, 100, 100],
[ 50, 50, 100]]])
tensor([[[100, 100, 100],
[ 50, 50, 50],
[100, 50, 50]]])
tensor([[[ 50, 50, 50],
[ 50, 50, 50],
[100, 50, 50]]])