📜  如何在Python创建动画?

📅  最后修改于: 2022-05-13 01:54:33.685000             🧑  作者: Mango

如何在Python创建动画?

动画是使可视化更具吸引力和用户吸引力的好方法。它帮助我们以有意义的方式展示数据可视化。 Python帮助我们使用现有的强大Python库创建动画可视化。 Matplotlib是一个非常流行的数据可视化库,通常用于数据的图形表示以及使用内置函数的动画。

使用 Matplotlib 创建动画有两种方法:

  • 使用 pause()函数
  • 使用 FuncAnimation()函数

方法一:使用 pause()函数

matplotlib 库的 pyplot 模块中的pause()函数用于暂停参数中提到的间隔秒。考虑下面的示例,我们将使用 matplotlib 创建一个简单的线性图并在其中显示动画:

  • 创建 2 个数组 X 和 Y,并存储从 1 到 100 的值。
  • 使用 plot()函数绘制 X 和 Y。
  • 以合适的时间间隔添加 pause()函数
  • 运行程序,你会看到动画。
Python
from matplotlib import pyplot as plt
  
x = []
y = []
  
for i in range(100):
    x.append(i)
    y.append(i)
  
    # Mention x and y limits to define their range
    plt.xlim(0, 100)
    plt.ylim(0, 100)
      
    # Ploting graph
    plt.plot(x, y, color = 'green')
    plt.pause(0.01)
  
plt.show()


Python
from matplotlib import pyplot as plt
from matplotlib.animation import FuncAnimation
import numpy as np
  
x = []
y = []
  
figure, ax = plt.subplots()
  
# Setting limits for x and y axis
ax.set_xlim(0, 100)
ax.set_ylim(0, 12)
  
# Since plotting a single graph
line,  = ax.plot(0, 0) 
  
def animation_function(i):
    x.append(i * 15)
    y.append(i)
  
    line.set_xdata(x)
    line.set_ydata(y)
    return line,
  
animation = FuncAnimation(figure,
                          func = animation_function,
                          frames = np.arange(0, 10, 0.1), 
                          interval = 10)
plt.show()


Python
from matplotlib import pyplot as plt
from matplotlib.animation import FuncAnimation, writers
import numpy as np
  
fig = plt.figure(figsize = (7,5))
axes = fig.add_subplot(1,1,1)
axes.set_ylim(0, 300)
palette = ['blue', 'red', 'green', 
           'darkorange', 'maroon', 'black']
  
y1, y2, y3, y4, y5, y6 = [], [], [], [], [], []
  
def animation_function(i):
    y1 = i
    y2 = 5 * i
    y3 = 3 * i
    y4 = 2 * i
    y5 = 6 * i
    y6 = 3 * i
  
    plt.xlabel("Country")
    plt.ylabel("GDP of Country")
      
    plt.bar(["India", "China", "Germany", 
             "USA", "Canada", "UK"],
            [y1, y2, y3, y4, y5, y6],
            color = palette)
  
plt.title("Bar Chart Animation")
  
animation = FuncAnimation(fig, animation_function, 
                          interval = 50)
plt.show()


Python
from matplotlib import pyplot as plt
from matplotlib.animation import FuncAnimation
import random
import numpy as np
  
x = []
y = []
colors = []
fig = plt.figure(figsize=(7,5))
  
def animation_func(i):
    x.append(random.randint(0,100))
    y.append(random.randint(0,100))
    colors.append(np.random.rand(1))
    area = random.randint(0,30) * random.randint(0,30)
    plt.xlim(0,100)
    plt.ylim(0,100)
    plt.scatter(x, y, c = colors, s = area, alpha = 0.5)
  
animation = FuncAnimation(fig, animation_func, 
                          interval = 100)
plt.show()


Python
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from matplotlib.animation import FuncAnimation
  
df = pd.read_csv('city_populations.csv',
                 usecols=['name', 'group', 'year', 'value'])
  
colors = dict(zip(['India','Europe','Asia',
                   'Latin America','Middle East',
                   'North America','Africa'],
                    ['#adb0ff', '#ffb3ff', '#90d595',
                     '#e48381', '#aafbff', '#f7bb5f', 
                     '#eafb50']))
  
group_lk = df.set_index('name')['group'].to_dict()
  
def draw_barchart(year):
    dff = df[df['year'].eq(year)].sort_values(by='value',
                                              ascending=True).tail(10)
    ax.clear()
    ax.barh(dff['name'], dff['value'],
            color=[colors[group_lk[x]] for x in dff['name']])
    dx = dff['value'].max() / 200
      
    for i, (value, name) in enumerate(zip(dff['value'],
                                          dff['name'])):
        ax.text(value-dx, i,     name,           
                size=14, weight=600,
                ha='right', va='bottom')
        ax.text(value-dx, i-.25, group_lk[name],
                size=10, color='#444444', 
                ha='right', va='baseline')
        ax.text(value+dx, i,     f'{value:,.0f}', 
                size=14, ha='left',  va='center')
          
    # polished styles
    ax.text(1, 0.4, year, transform=ax.transAxes, 
            color='#777777', size=46, ha='right',
            weight=800)
    ax.text(0, 1.06, 'Population (thousands)',
            transform=ax.transAxes, size=12,
            color='#777777')
      
    ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}'))
    ax.xaxis.set_ticks_position('top')
    ax.tick_params(axis='x', colors='#777777', labelsize=12)
    ax.set_yticks([])
    ax.margins(0, 0.01)
    ax.grid(which='major', axis='x', linestyle='-')
    ax.set_axisbelow(True)
    ax.text(0, 1.12, 'The most populous cities in the world from 1500 to 2018',
            transform=ax.transAxes, size=24, weight=600, ha='left')
      
    ax.text(1, 0, 'by @pratapvardhan; credit @jburnmurdoch', 
            transform=ax.transAxes, ha='right', color='#777777', 
            bbox=dict(facecolor='white', alpha=0.8, edgecolor='white'))
    plt.box(False)
    plt.show()
  
fig, ax = plt.subplots(figsize=(15, 8))
animator = FuncAnimation(fig, draw_barchart, 
                         frames = range(1990, 2019))
plt.show()


输出 :



同样,您可以使用 pause()函数在各种绘图中创建动画。

方法二:使用 FuncAnimation()函数

这个 FuncAnimation()函数不会自己创建动画,而是从我们传递的一系列图形中创建动画。

现在您可以使用 FuncAnimation函数制作多种类型的动画:

线性图动画:

在这个例子中,我们将创建一个简单的线性图,它将显示一条线的动画。同样,使用 FuncAnimation,我们可以创建多种类型的动画视觉表示。我们只需要在一个函数定义我们的动画,然后用合适的参数将它传递给FuncAnimation

Python

from matplotlib import pyplot as plt
from matplotlib.animation import FuncAnimation
import numpy as np
  
x = []
y = []
  
figure, ax = plt.subplots()
  
# Setting limits for x and y axis
ax.set_xlim(0, 100)
ax.set_ylim(0, 12)
  
# Since plotting a single graph
line,  = ax.plot(0, 0) 
  
def animation_function(i):
    x.append(i * 15)
    y.append(i)
  
    line.set_xdata(x)
    line.set_ydata(y)
    return line,
  
animation = FuncAnimation(figure,
                          func = animation_function,
                          frames = np.arange(0, 10, 0.1), 
                          interval = 10)
plt.show()

输出:



Python的条形图竞赛动画

在此示例中,我们将创建一个简单的条形图动画,它将显示每个条形的动画。

Python

from matplotlib import pyplot as plt
from matplotlib.animation import FuncAnimation, writers
import numpy as np
  
fig = plt.figure(figsize = (7,5))
axes = fig.add_subplot(1,1,1)
axes.set_ylim(0, 300)
palette = ['blue', 'red', 'green', 
           'darkorange', 'maroon', 'black']
  
y1, y2, y3, y4, y5, y6 = [], [], [], [], [], []
  
def animation_function(i):
    y1 = i
    y2 = 5 * i
    y3 = 3 * i
    y4 = 2 * i
    y5 = 6 * i
    y6 = 3 * i
  
    plt.xlabel("Country")
    plt.ylabel("GDP of Country")
      
    plt.bar(["India", "China", "Germany", 
             "USA", "Canada", "UK"],
            [y1, y2, y3, y4, y5, y6],
            color = palette)
  
plt.title("Bar Chart Animation")
  
animation = FuncAnimation(fig, animation_function, 
                          interval = 50)
plt.show()

输出:

Python的散点图动画:

在这个例子中,我们将使用随机函数在Python动画散点图。我们将遍历animation_func并在迭代时绘制 x 和 y 轴的随机值。

Python

from matplotlib import pyplot as plt
from matplotlib.animation import FuncAnimation
import random
import numpy as np
  
x = []
y = []
colors = []
fig = plt.figure(figsize=(7,5))
  
def animation_func(i):
    x.append(random.randint(0,100))
    y.append(random.randint(0,100))
    colors.append(np.random.rand(1))
    area = random.randint(0,30) * random.randint(0,30)
    plt.xlim(0,100)
    plt.ylim(0,100)
    plt.scatter(x, y, c = colors, s = area, alpha = 0.5)
  
animation = FuncAnimation(fig, animation_func, 
                          interval = 100)
plt.show()

输出:

条形图竞赛中的水平移动:

  • 在这里,我们将使用城市数据集中的最高人口绘制条形图竞赛。
  • 不同的城市会有不同的条形图,条形图竞赛将从 1990 年到 2018 年迭代。
  • 我们从人口最多的数据集中选择了最高城市的国家。

数据集可以从这里下载: city_populations

Python

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from matplotlib.animation import FuncAnimation
  
df = pd.read_csv('city_populations.csv',
                 usecols=['name', 'group', 'year', 'value'])
  
colors = dict(zip(['India','Europe','Asia',
                   'Latin America','Middle East',
                   'North America','Africa'],
                    ['#adb0ff', '#ffb3ff', '#90d595',
                     '#e48381', '#aafbff', '#f7bb5f', 
                     '#eafb50']))
  
group_lk = df.set_index('name')['group'].to_dict()
  
def draw_barchart(year):
    dff = df[df['year'].eq(year)].sort_values(by='value',
                                              ascending=True).tail(10)
    ax.clear()
    ax.barh(dff['name'], dff['value'],
            color=[colors[group_lk[x]] for x in dff['name']])
    dx = dff['value'].max() / 200
      
    for i, (value, name) in enumerate(zip(dff['value'],
                                          dff['name'])):
        ax.text(value-dx, i,     name,           
                size=14, weight=600,
                ha='right', va='bottom')
        ax.text(value-dx, i-.25, group_lk[name],
                size=10, color='#444444', 
                ha='right', va='baseline')
        ax.text(value+dx, i,     f'{value:,.0f}', 
                size=14, ha='left',  va='center')
          
    # polished styles
    ax.text(1, 0.4, year, transform=ax.transAxes, 
            color='#777777', size=46, ha='right',
            weight=800)
    ax.text(0, 1.06, 'Population (thousands)',
            transform=ax.transAxes, size=12,
            color='#777777')
      
    ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}'))
    ax.xaxis.set_ticks_position('top')
    ax.tick_params(axis='x', colors='#777777', labelsize=12)
    ax.set_yticks([])
    ax.margins(0, 0.01)
    ax.grid(which='major', axis='x', linestyle='-')
    ax.set_axisbelow(True)
    ax.text(0, 1.12, 'The most populous cities in the world from 1500 to 2018',
            transform=ax.transAxes, size=24, weight=600, ha='left')
      
    ax.text(1, 0, 'by @pratapvardhan; credit @jburnmurdoch', 
            transform=ax.transAxes, ha='right', color='#777777', 
            bbox=dict(facecolor='white', alpha=0.8, edgecolor='white'))
    plt.box(False)
    plt.show()
  
fig, ax = plt.subplots(figsize=(15, 8))
animator = FuncAnimation(fig, draw_barchart, 
                         frames = range(1990, 2019))
plt.show()

输出: