Python中的 numpy.equal()
numpy.equal(arr1, arr2, out = None, where = True, cast = 'same_kind', order = 'K', dtype = None, ufunc 'not_equal') :这个逻辑函数检查 arr1 == arr2 element-wise .
参数 :
arr1 : [array_like]Input array
arr2 : [array_like]Input array
out : [ndarray, optional]Output array with same dimensions as Input array, placed with result.
**kwargs : allows you to pass keyword variable length of argument to a function. It is used when we want to handle named argument in a function.
where : [array_like, optional]True value means to calculate the universal functions(ufunc) at that position, False value means to leave the value in the output alone.
返回 :
Returns arr1 == arr2 element-wise
代码 1:
# Python Program illustrating
# numpy.equal() method
import numpy as geek
a = geek.equal([1., 2.], [1., 3.])
print("Check to be Equal : \n", a, "\n")
b = geek.equal([1, 2], [[1, 3],[1, 4]])
print("Check to be Equal : \n", b, "\n")
输出 :
Check to be Equal :
[ True False]
Check to be Equal :
[[ True False]
[ True False]]
代码 2:使用 .equal()函数比较数据类型
# Python Program illustrating
# numpy.equal() method
import numpy as geek
# Here we will compare Complex values with int
a = geek.array([0 + 1j, 2])
b = geek.array([1,2])
d = geek.equal(a, b)
print("Comparing complex with int using .equal() : ", d)
输出 :
Comparing complex with int using .equal() : [False True]
代码 3:
# Python Program illustrating
# numpy.not_equal() method
import numpy as geek
# Here we will compare Float with int values
a = geek.array([1.1, 1])
b = geek.array([1, 2])
d = geek.not_equal(a, b)
print("\nComparing float with int using .not_equal() : ", d)
输出 :
Comparing float with int using .not_equal() : [ True True]
参考 :
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.equal.html
.