毫升 |无监督人脸聚类管道
实时人脸识别是自动化安全部门仍然面临的问题。随着卷积神经网络的进步以及 Region-CNN 的特别创新方式,已经证实,使用我们当前的技术,我们可以选择 FaceNet、YOLO 等监督学习选项,在现实环境中实现快速和实时的人脸识别.
要训练监督模型,我们需要获取目标标签的数据集,这仍然是一项繁琐的任务。我们需要一种高效且自动化的数据集生成解决方案,用户干预最少的标记工作。
建议的解决方案 –
简介:我们提出了一个数据集生成管道,该管道以视频剪辑为源,提取所有面部并将它们聚类为代表不同人物的有限且准确的图像集。每个集合都可以轻松地通过人工输入轻松标记。
技术细节:我们将使用 opencv lib 每秒从输入视频剪辑中提取帧。 1 秒似乎适合覆盖相关数据和有限的处理帧。
我们将使用 face_recognition 库(由 dlib 支持)从帧中提取人脸并对齐它们以进行特征提取。
然后,我们将提取人类可观察特征并使用scikit-learn提供的DBSCAN 聚类对它们进行聚类。
对于解决方案,我们将裁剪所有面孔,创建标签并将它们分组到文件夹中,以便用户将它们调整为用于训练用例的数据集。
实施中的挑战:对于更多的受众,我们计划在 CPU 而不是 NVIDIA GPU 中实施解决方案。使用 NVIDIA GPU 可以提高流水线的效率。
面部嵌入提取的 CPU 实现非常慢(每张图像 30+ 秒)。为了解决这个问题,我们使用并行管道执行来实现它们(每张图像大约需要 13 秒),然后合并它们的结果以进行进一步的聚类任务。我们将 tqdm 与 PyPiper 一起引入,用于进度更新和从输入视频中提取的帧的大小调整,以顺利执行管道。
Input: Footage.mp4
Output:
Required Python3 modules:
os, cv2, numpy, tensorflow, json, re, shutil, time, pickle, pyPiper, tqdm, imutils, face_recognition, dlib, warnings, sklearn
片段部分:
对于包含所有类定义的文件FaceClusteringLibrary.py的内容,以下是其工作的片段和解释。
ResizeUtils 的类实现提供了函数rescale_by_height 和 rescale_by_width。
“rescale_by_width”是一个将“image”和“target_width”作为输入的函数。它放大/缩小宽度的图像尺寸以满足目标宽度。高度是自动计算的,因此纵横比保持不变。 rescale_by_height 也相同,但它的目标不是宽度,而是高度。
Python3
'''
The ResizeUtils provides resizing function
to keep the aspect ratio intact
Credits: AndyP at StackOverflow'''
class ResizeUtils:
# Given a target height, adjust the image
# by calculating the width and resize
def rescale_by_height(self, image, target_height,
method = cv2.INTER_LANCZOS4):
# Rescale `image` to `target_height`
# (preserving aspect ratio)
w = int(round(target_height * image.shape[1] / image.shape[0]))
return (cv2.resize(image, (w, target_height),
interpolation = method))
# Given a target width, adjust the image
# by calculating the height and resize
def rescale_by_width(self, image, target_width,
method = cv2.INTER_LANCZOS4):
# Rescale `image` to `target_width`
# (preserving aspect ratio)
h = int(round(target_width * image.shape[0] / image.shape[1]))
return (cv2.resize(image, (target_width, h),
interpolation = method))
Python3
# The FramesGenerator extracts image
# frames from the given video file
# The image frames are resized for
# face_recognition / dlib processing
class FramesGenerator:
def __init__(self, VideoFootageSource):
self.VideoFootageSource = VideoFootageSource
# Resize the given input to fit in a specified
# size for face embeddings extraction
def AutoResize(self, frame):
resizeUtils = ResizeUtils()
height, width, _ = frame.shape
if height > 500:
frame = resizeUtils.rescale_by_height(frame, 500)
self.AutoResize(frame)
if width > 700:
frame = resizeUtils.rescale_by_width(frame, 700)
self.AutoResize(frame)
return frame
Python3
# Extract 1 frame from each second from video footage
# and save the frames to a specific folder
def GenerateFrames(self, OutputDirectoryName):
cap = cv2.VideoCapture(self.VideoFootageSource)
_, frame = cap.read()
fps = cap.get(cv2.CAP_PROP_FPS)
TotalFrames = cap.get(cv2.CAP_PROP_FRAME_COUNT)
print("[INFO] Total Frames ", TotalFrames, " @ ", fps, " fps")
print("[INFO] Calculating number of frames per second")
CurrentDirectory = os.path.curdir
OutputDirectoryPath = os.path.join(
CurrentDirectory, OutputDirectoryName)
if os.path.exists(OutputDirectoryPath):
shutil.rmtree(OutputDirectoryPath)
time.sleep(0.5)
os.mkdir(OutputDirectoryPath)
CurrentFrame = 1
fpsCounter = 0
FrameWrittenCount = 1
while CurrentFrame < TotalFrames:
_, frame = cap.read()
if (frame is None):
continue
if fpsCounter > fps:
fpsCounter = 0
frame = self.AutoResize(frame)
filename = "frame_" + str(FrameWrittenCount) + ".jpg"
cv2.imwrite(os.path.join(
OutputDirectoryPath, filename), frame)
FrameWrittenCount += 1
fpsCounter += 1
CurrentFrame += 1
print('[INFO] Frames extracted')
Python3
# Following are nodes for pipeline constructions.
# It will create and asynchronously execute threads
# for reading images, extracting facial features and
# storing them independently in different threads
# Keep emitting the filenames into
# the pipeline for processing
class FramesProvider(Node):
def setup(self, sourcePath):
self.sourcePath = sourcePath
self.filesList = []
for item in os.listdir(self.sourcePath):
_, fileExt = os.path.splitext(item)
if fileExt == '.jpg':
self.filesList.append(os.path.join(item))
self.TotalFilesCount = self.size = len(self.filesList)
self.ProcessedFilesCount = self.pos = 0
# Emit each filename in the pipeline for parallel processing
def run(self, data):
if self.ProcessedFilesCount < self.TotalFilesCount:
self.emit({'id': self.ProcessedFilesCount,
'imagePath': os.path.join(self.sourcePath,
self.filesList[self.ProcessedFilesCount])})
self.ProcessedFilesCount += 1
self.pos = self.ProcessedFilesCount
else:
self.close()
Python3
# Encode the face embedding, reference path
# and location and emit to pipeline
class FaceEncoder(Node):
def setup(self, detection_method = 'cnn'):
self.detection_method = detection_method
# detection_method can be cnn or hog
def run(self, data):
id = data['id']
imagePath = data['imagePath']
image = cv2.imread(imagePath)
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
boxes = face_recognition.face_locations(
rgb, model = self.detection_method)
encodings = face_recognition.face_encodings(rgb, boxes)
d = [{"imagePath": imagePath, "loc": box, "encoding": enc}
for (box, enc) in zip(boxes, encodings)]
self.emit({'id': id, 'encodings': d})
Python3
# Receive the face embeddings for clustering and
# id for naming the distinct filename
class DatastoreManager(Node):
def setup(self, encodingsOutputPath):
self.encodingsOutputPath = encodingsOutputPath
def run(self, data):
encodings = data['encodings']
id = data['id']
with open(os.path.join(self.encodingsOutputPath,
'encodings_' + str(id) + '.pickle'), 'wb') as f:
f.write(pickle.dumps(encodings))
Python3
# PicklesListCollator takes multiple pickle
# files as input and merges them together
# It is made specifically to support use-case
# of merging distinct pickle files into one
class PicklesListCollator:
def __init__(self, picklesInputDirectory):
self.picklesInputDirectory = picklesInputDirectory
# Here we will list down all the pickles
# files generated from multiple threads,
# read the list of results append them to a
# common list and create another pickle
# with combined list as content
def GeneratePickle(self, outputFilepath):
datastore = []
ListOfPickleFiles = []
for item in os.listdir(self.picklesInputDirectory):
_, fileExt = os.path.splitext(item)
if fileExt == '.pickle':
ListOfPickleFiles.append(os.path.join(
self.picklesInputDirectory, item))
for picklePath in ListOfPickleFiles:
with open(picklePath, "rb") as f:
data = pickle.loads(f.read())
datastore.extend(data)
with open(outputFilepath, 'wb') as f:
f.write(pickle.dumps(datastore))
Python3
# Face clustering functionality
class FaceClusterUtility:
def __init__(self, EncodingFilePath):
self.EncodingFilePath = EncodingFilePath
# Credits: Arian's pyimagesearch for the clustering code
# Here we are using the sklearn.DBSCAN functionality
# cluster all the facial embeddings to get clusters
# representing distinct people
def Cluster(self):
InputEncodingFile = self.EncodingFilePath
if not (os.path.isfile(InputEncodingFile) and
os.access(InputEncodingFile, os.R_OK)):
print('The input encoding file, ' +
str(InputEncodingFile) +
' does not exists or unreadable')
exit()
NumberOfParallelJobs = -1
# load the serialized face encodings
# + bounding box locations from disk,
# then extract the set of encodings to
# so we can cluster on them
print("[INFO] Loading encodings")
data = pickle.loads(open(InputEncodingFile, "rb").read())
data = np.array(data)
encodings = [d["encoding"] for d in data]
# cluster the embeddings
print("[INFO] Clustering")
clt = DBSCAN(eps = 0.5, metric ="euclidean",
n_jobs = NumberOfParallelJobs)
clt.fit(encodings)
# determine the total number of
# unique faces found in the dataset
labelIDs = np.unique(clt.labels_)
numUniqueFaces = len(np.where(labelIDs > -1)[0])
print("[INFO] # unique faces: {}".format(numUniqueFaces))
return clt.labels_
Python3
# Inherit class tqdm for visualization of progress
class TqdmUpdate(tqdm):
# This function will be passed as progress
# callback function. Setting the predefined
# variables for auto-updates in visualization
def update(self, done, total_size = None):
if total_size is not None:
self.total = total_size
self.n = done
super().refresh()
Python3
class FaceImageGenerator:
def __init__(self, EncodingFilePath):
self.EncodingFilePath = EncodingFilePath
# Here we are creating montages for
# first 25 faces for each distinct face.
# We will also generate images for all
# the distinct faces by using the labels
# from clusters and image url from the
# encodings pickle file.
# The face bounding box is increased a
# little more for training purposes and
# we also created the exact annotation for
# each face image (similar to darknet YOLO)
# to easily adapt the annotation for future
# use in supervised training
def GenerateImages(self, labels, OutputFolderName = "ClusteredFaces",
MontageOutputFolder = "Montage"):
output_directory = os.getcwd()
OutputFolder = os.path.join(output_directory, OutputFolderName)
if not os.path.exists(OutputFolder):
os.makedirs(OutputFolder)
else:
shutil.rmtree(OutputFolder)
time.sleep(0.5)
os.makedirs(OutputFolder)
MontageFolderPath = os.path.join(OutputFolder, MontageOutputFolder)
os.makedirs(MontageFolderPath)
data = pickle.loads(open(self.EncodingFilePath, "rb").read())
data = np.array(data)
labelIDs = np.unique(labels)
# loop over the unique face integers
for labelID in labelIDs:
# find all indexes into the `data` array
# that belong to the current label ID, then
# randomly sample a maximum of 25 indexes
# from the set
print("[INFO] faces for face ID: {}".format(labelID))
FaceFolder = os.path.join(OutputFolder, "Face_" + str(labelID))
os.makedirs(FaceFolder)
idxs = np.where(labels == labelID)[0]
# initialize the list of faces to
# include in the montage
portraits = []
# loop over the sampled indexes
counter = 1
for i in idxs:
# load the input image and extract the face ROI
image = cv2.imread(data[i]["imagePath"])
(o_top, o_right, o_bottom, o_left) = data[i]["loc"]
height, width, channel = image.shape
widthMargin = 100
heightMargin = 150
top = o_top - heightMargin
if top < 0: top = 0
bottom = o_bottom + heightMargin
if bottom > height: bottom = height
left = o_left - widthMargin
if left < 0: left = 0
right = o_right + widthMargin
if right > width: right = width
portrait = image[top:bottom, left:right]
if len(portraits) < 25:
portraits.append(portrait)
resizeUtils = ResizeUtils()
portrait = resizeUtils.rescale_by_width(portrait, 400)
FaceFilename = "face_" + str(counter) + ".jpg"
FaceImagePath = os.path.join(FaceFolder, FaceFilename)
cv2.imwrite(FaceImagePath, portrait)
widthMargin = 20
heightMargin = 20
top = o_top - heightMargin
if top < 0: top = 0
bottom = o_bottom + heightMargin
if bottom > height: bottom = height
left = o_left - widthMargin
if left < 0: left = 0
right = o_right + widthMargin
if right > width:
right = width
AnnotationFilename = "face_" + str(counter) + ".txt"
AnnotationFilePath = os.path.join(FaceFolder, AnnotationFilename)
f = open(AnnotationFilePath, 'w')
f.write(str(labelID) + ' ' +
str(left) + ' ' + str(top) + ' ' +
str(right) + ' ' + str(bottom) + "\n")
f.close()
counter += 1
montage = build_montages(portraits, (96, 120), (5, 5))[0]
MontageFilenamePath = os.path.join(
MontageFolderPath, "Face_" + str(labelID) + ".jpg")
cv2.imwrite(MontageFilenamePath, montage)
Python3
# importing all classes from above Python file
from FaceClusteringLibrary import *
if __name__ == "__main__":
# Generate the frames from given video footage
framesGenerator = FramesGenerator("Footage.mp4")
framesGenerator.GenerateFrames("Frames")
# Design and run the face clustering pipeline
CurrentPath = os.getcwd()
FramesDirectory = "Frames"
FramesDirectoryPath = os.path.join(CurrentPath, FramesDirectory)
EncodingsFolder = "Encodings"
EncodingsFolderPath = os.path.join(CurrentPath, EncodingsFolder)
if os.path.exists(EncodingsFolderPath):
shutil.rmtree(EncodingsFolderPath, ignore_errors = True)
time.sleep(0.5)
os.makedirs(EncodingsFolderPath)
pipeline = Pipeline(
FramesProvider("Files source", sourcePath = FramesDirectoryPath) |
FaceEncoder("Encode faces") |
DatastoreManager("Store encoding",
encodingsOutputPath = EncodingsFolderPath),
n_threads = 3, quiet = True)
pbar = TqdmUpdate()
pipeline.run(update_callback = pbar.update)
print()
print('[INFO] Encodings extracted')
# Merge all the encodings pickle files into one
CurrentPath = os.getcwd()
EncodingsInputDirectory = "Encodings"
EncodingsInputDirectoryPath = os.path.join(
CurrentPath, EncodingsInputDirectory)
OutputEncodingPickleFilename = "encodings.pickle"
if os.path.exists(OutputEncodingPickleFilename):
os.remove(OutputEncodingPickleFilename)
picklesListCollator = PicklesListCollator(
EncodingsInputDirectoryPath)
picklesListCollator.GeneratePickle(
OutputEncodingPickleFilename)
# To manage any delay in file writing
time.sleep(0.5)
# Start clustering process and generate
# output images with annotations
EncodingPickleFilePath = "encodings.pickle"
faceClusterUtility = FaceClusterUtility(EncodingPickleFilePath)
faceImageGenerator = FaceImageGenerator(EncodingPickleFilePath)
labelIDs = faceClusterUtility.Cluster()
faceImageGenerator.GenerateImages(
labelIDs, "ClusteredFaces", "Montage")
以下是 FramesGenerator 类的定义。此类提供通过顺序读取视频来提取 jpg 图像的功能。如果我们以输入视频文件为例,它的帧速率可以约为 30 fps。我们可以得出结论,对于 1 秒的视频,将有 30 张图像。即使是 2 分钟的视频,要处理的图像数量也将是 2 * 60 * 30 = 3600。要处理的图像数量过多,可能需要数小时才能完成管道处理。
但还有一个事实,面孔和人可能不会在一秒钟内改变。因此考虑一个 2 分钟的视频,在 1 秒内生成 30 张图像是繁琐且重复处理的。相反,我们只能在 1 秒内拍摄 1 张图像。 “FramesGenerator”的实现每秒仅从视频剪辑中转储 1 张图像。
考虑到转储的图像要经过 face_recognition/dlib 处理以进行人脸提取,我们尝试将高度阈值保持为不大于 500,宽度上限为 700。此限制由进一步调用 rescale_by_height 或 rescale_by_width 的“AutoResize”函数施加如果达到限制,则减小图像的大小,但仍保留纵横比。
来到以下片段,AutoResize函数尝试对给定图像的尺寸施加限制。如果宽度大于 700,我们将其缩小以保持宽度 700 并保持纵横比。这里设置的另一个限制是,高度不得大于 500。
Python3
# The FramesGenerator extracts image
# frames from the given video file
# The image frames are resized for
# face_recognition / dlib processing
class FramesGenerator:
def __init__(self, VideoFootageSource):
self.VideoFootageSource = VideoFootageSource
# Resize the given input to fit in a specified
# size for face embeddings extraction
def AutoResize(self, frame):
resizeUtils = ResizeUtils()
height, width, _ = frame.shape
if height > 500:
frame = resizeUtils.rescale_by_height(frame, 500)
self.AutoResize(frame)
if width > 700:
frame = resizeUtils.rescale_by_width(frame, 700)
self.AutoResize(frame)
return frame
以下是 GenerateFrames函数的片段。它查询 fps 以决定在多少帧中,可以转储 1 张图像。我们清除输出目录并开始迭代整个帧。在转储任何图像之前,如果图像达到 AutoResize函数中指定的限制,我们会调整图像大小。
Python3
# Extract 1 frame from each second from video footage
# and save the frames to a specific folder
def GenerateFrames(self, OutputDirectoryName):
cap = cv2.VideoCapture(self.VideoFootageSource)
_, frame = cap.read()
fps = cap.get(cv2.CAP_PROP_FPS)
TotalFrames = cap.get(cv2.CAP_PROP_FRAME_COUNT)
print("[INFO] Total Frames ", TotalFrames, " @ ", fps, " fps")
print("[INFO] Calculating number of frames per second")
CurrentDirectory = os.path.curdir
OutputDirectoryPath = os.path.join(
CurrentDirectory, OutputDirectoryName)
if os.path.exists(OutputDirectoryPath):
shutil.rmtree(OutputDirectoryPath)
time.sleep(0.5)
os.mkdir(OutputDirectoryPath)
CurrentFrame = 1
fpsCounter = 0
FrameWrittenCount = 1
while CurrentFrame < TotalFrames:
_, frame = cap.read()
if (frame is None):
continue
if fpsCounter > fps:
fpsCounter = 0
frame = self.AutoResize(frame)
filename = "frame_" + str(FrameWrittenCount) + ".jpg"
cv2.imwrite(os.path.join(
OutputDirectoryPath, filename), frame)
FrameWrittenCount += 1
fpsCounter += 1
CurrentFrame += 1
print('[INFO] Frames extracted')
以下是 FramesProvider 类的片段。它继承了“Node”,可以用来构建图像处理管道。我们实现“设置”和“运行”功能。 “setup”函数中定义的任何参数都可以具有参数,构造函数在创建对象时将其作为参数。在这里,我们可以将 sourcePath 参数传递给 FramesProvider 对象。 “设置”函数只运行一次。 “run”函数通过调用emit函数到处理管道来运行并保持发射数据,直到调用close函数。
在这里,在“设置”中,我们接受 sourcePath 作为参数并遍历给定框架目录中的所有文件。无论哪个文件的扩展名为 .jpg(将由 FrameGenerator 类生成),我们都将其添加到“filesList”列表中。
在 run函数的调用过程中,来自“filesList”的所有 jpg 图像路径都打包了指定唯一“id”和“imagePath”作为对象的属性,并发送到管道进行处理。
Python3
# Following are nodes for pipeline constructions.
# It will create and asynchronously execute threads
# for reading images, extracting facial features and
# storing them independently in different threads
# Keep emitting the filenames into
# the pipeline for processing
class FramesProvider(Node):
def setup(self, sourcePath):
self.sourcePath = sourcePath
self.filesList = []
for item in os.listdir(self.sourcePath):
_, fileExt = os.path.splitext(item)
if fileExt == '.jpg':
self.filesList.append(os.path.join(item))
self.TotalFilesCount = self.size = len(self.filesList)
self.ProcessedFilesCount = self.pos = 0
# Emit each filename in the pipeline for parallel processing
def run(self, data):
if self.ProcessedFilesCount < self.TotalFilesCount:
self.emit({'id': self.ProcessedFilesCount,
'imagePath': os.path.join(self.sourcePath,
self.filesList[self.ProcessedFilesCount])})
self.ProcessedFilesCount += 1
self.pos = self.ProcessedFilesCount
else:
self.close()
以下是继承“Node”的“ FaceEncoder ”类实现,可以推送到图像处理管道中。在“设置”函数中,我们接受“face_recognition/dlib”人脸识别器调用的“detection_method”值。它可以有基于“cnn”的检测器或基于“hog”的检测器。
“run”函数将传入的数据解包为“id”和“imagePath”。
随后,它从“imagePath”中读取图像,运行“face_recognition/dlib”库中定义的“face_location”以裁剪出对齐的人脸图像,这是我们感兴趣的区域。对齐的人脸图像是一个矩形裁剪图像,其眼睛和嘴唇与图像中的特定位置对齐(注意:实现可能与其他库不同,例如 opencv)。
此外,我们调用“face_recognition/dlib”中定义的“face_encodings”函数来从每个框中提取面部嵌入。这种嵌入浮动值可以帮助您到达对齐的人脸图像中特征的确切位置。
我们将变量“d”定义为一个盒子数组和各自的嵌入。现在,我们将“id”和嵌入数组作为“encoding”键打包到一个对象中,并将其发送到图像处理管道。
Python3
# Encode the face embedding, reference path
# and location and emit to pipeline
class FaceEncoder(Node):
def setup(self, detection_method = 'cnn'):
self.detection_method = detection_method
# detection_method can be cnn or hog
def run(self, data):
id = data['id']
imagePath = data['imagePath']
image = cv2.imread(imagePath)
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
boxes = face_recognition.face_locations(
rgb, model = self.detection_method)
encodings = face_recognition.face_encodings(rgb, boxes)
d = [{"imagePath": imagePath, "loc": box, "encoding": enc}
for (box, enc) in zip(boxes, encodings)]
self.emit({'id': id, 'encodings': d})
以下是 DatastoreManager 的一个实现,它再次继承自“Node”并且可以插入到图像处理管道中。该类的目的是将“encodings”数组转储为pickle文件,并使用“id”参数唯一地命名pickle文件。我们希望管道运行多线程。
为了利用多线程来提高性能,我们需要适当地分离异步任务并尽量避免任何同步的需要。因此,为了获得最佳性能,我们独立地让管道中的线程将数据写入单独的单独文件,而不会干扰任何其他线程操作。
如果您正在考虑它节省了多少时间,在使用的开发硬件中,没有多线程,平均嵌入提取时间约为 30 秒。在多线程管道之后,(有 4 个线程)它减少到大约 10 秒,但代价是 CPU 使用率很高。
由于线程大约需要 10 秒,因此不会发生频繁的磁盘写入,也不会影响我们的多线程性能。
另一种情况,如果您正在考虑为什么使用 pickle 而不是 JSON 替代方案?事实是 JSON 是 pickle 的更好替代品。 Pickle 对于数据存储和通信非常不安全。 Pickles 可以被恶意修改以在Python中嵌入可执行代码。 JSON 文件是人类可读的,编码和解码速度更快。 pickle 唯一擅长的是将Python对象和内容无错误地转储到二进制文件中。
由于我们不打算存储和分发 pickle 文件,并且为了无错误执行,我们正在使用 pickle。否则,强烈建议使用 JSON 和其他替代方案。
Python3
# Receive the face embeddings for clustering and
# id for naming the distinct filename
class DatastoreManager(Node):
def setup(self, encodingsOutputPath):
self.encodingsOutputPath = encodingsOutputPath
def run(self, data):
encodings = data['encodings']
id = data['id']
with open(os.path.join(self.encodingsOutputPath,
'encodings_' + str(id) + '.pickle'), 'wb') as f:
f.write(pickle.dumps(encodings))
以下是 PickleListCollator 类的实现。它旨在读取多个pickle文件中的对象数组,合并为一个数组并将组合数组转储到一个pickle文件中。
在这里,只有一个函数GeneratePickle 接受 outputFilepath,它指定将包含合并数组的单个输出 pickle 文件。
Python3
# PicklesListCollator takes multiple pickle
# files as input and merges them together
# It is made specifically to support use-case
# of merging distinct pickle files into one
class PicklesListCollator:
def __init__(self, picklesInputDirectory):
self.picklesInputDirectory = picklesInputDirectory
# Here we will list down all the pickles
# files generated from multiple threads,
# read the list of results append them to a
# common list and create another pickle
# with combined list as content
def GeneratePickle(self, outputFilepath):
datastore = []
ListOfPickleFiles = []
for item in os.listdir(self.picklesInputDirectory):
_, fileExt = os.path.splitext(item)
if fileExt == '.pickle':
ListOfPickleFiles.append(os.path.join(
self.picklesInputDirectory, item))
for picklePath in ListOfPickleFiles:
with open(picklePath, "rb") as f:
data = pickle.loads(f.read())
datastore.extend(data)
with open(outputFilepath, 'wb') as f:
f.write(pickle.dumps(datastore))
下面是 FaceClusterUtility 类的实现。定义了一个构造函数,它将“EncodingFilePath”的值作为合并泡菜文件的路径。我们从 pickle 文件中读取数组,并尝试使用“scikit”库中的“DBSCAN”实现对它们进行聚类。与 k-means 不同,DBSCAN 扫描不需要簇的数量。簇的数量取决于阈值参数,将自动计算。
DBSCAN 实现在“scikit”中提供,并且还接受用于计算的线程数。
在这里,我们有一个函数“Cluster”,它将被调用以从 pickle 文件中读取数组数据,运行“DBSCAN”,将唯一的集群打印为唯一的面并返回标签。标签是表示类别的唯一值,可用于识别数组中存在的人脸的类别。 (数组内容来自pickle文件)。
Python3
# Face clustering functionality
class FaceClusterUtility:
def __init__(self, EncodingFilePath):
self.EncodingFilePath = EncodingFilePath
# Credits: Arian's pyimagesearch for the clustering code
# Here we are using the sklearn.DBSCAN functionality
# cluster all the facial embeddings to get clusters
# representing distinct people
def Cluster(self):
InputEncodingFile = self.EncodingFilePath
if not (os.path.isfile(InputEncodingFile) and
os.access(InputEncodingFile, os.R_OK)):
print('The input encoding file, ' +
str(InputEncodingFile) +
' does not exists or unreadable')
exit()
NumberOfParallelJobs = -1
# load the serialized face encodings
# + bounding box locations from disk,
# then extract the set of encodings to
# so we can cluster on them
print("[INFO] Loading encodings")
data = pickle.loads(open(InputEncodingFile, "rb").read())
data = np.array(data)
encodings = [d["encoding"] for d in data]
# cluster the embeddings
print("[INFO] Clustering")
clt = DBSCAN(eps = 0.5, metric ="euclidean",
n_jobs = NumberOfParallelJobs)
clt.fit(encodings)
# determine the total number of
# unique faces found in the dataset
labelIDs = np.unique(clt.labels_)
numUniqueFaces = len(np.where(labelIDs > -1)[0])
print("[INFO] # unique faces: {}".format(numUniqueFaces))
return clt.labels_
以下是从“tqdm”继承的 TqdmUpdate 类的实现。 tqdm 是一个Python库,可在控制台界面中可视化进度条。
变量“n”和“total”由“tqdm”识别。这两个变量的值用于计算所取得的进展。
“update”函数中的参数“done”和“total_size”是在管道框架“PyPiper”中绑定到更新事件时提供的值。 super().refresh() 调用“tqdm”类中“刷新”函数的实现,该函数可视化并更新控制台中的进度条。
Python3
# Inherit class tqdm for visualization of progress
class TqdmUpdate(tqdm):
# This function will be passed as progress
# callback function. Setting the predefined
# variables for auto-updates in visualization
def update(self, done, total_size = None):
if total_size is not None:
self.total = total_size
self.n = done
super().refresh()
以下是 FaceImageGenerator 类的实现。此类提供从聚类后产生的标签生成蒙太奇、裁剪的肖像图像和注释以用于未来训练目的(例如 Darknet YOLO)的功能。
构造函数期望 EncodingFilePath 作为合并的 pickle 文件路径。它将用于加载所有面部编码。我们现在对生成图像的“imagePath”和人脸坐标感兴趣。
对“GenerateImages”的调用完成了预期的工作。我们从合并的 pickle 文件中加载数组。我们对标签应用唯一操作并循环遍历标签。在标签的迭代中,对于每个唯一标签,我们列出具有相同当前标签的所有数组索引。
再次迭代这些数组索引以处理每个人脸。
对于人脸的处理,我们使用索引来获取图像文件的路径和人脸的坐标。
图像文件从图像文件的路径加载。面部的坐标被扩展为肖像形状(我们还确保它的扩展不会超过图像的尺寸),并且它被裁剪并作为肖像图像转储到文件中。
我们从原始坐标重新开始,并稍作扩展,为未来的监督训练选项创建注释,以提高识别能力。
对于标注,我们只是为“Darknet YOLO”设计的,但它也可以适用于任何其他框架。最后,我们构建一个蒙太奇并将其写入图像文件。
Python3
class FaceImageGenerator:
def __init__(self, EncodingFilePath):
self.EncodingFilePath = EncodingFilePath
# Here we are creating montages for
# first 25 faces for each distinct face.
# We will also generate images for all
# the distinct faces by using the labels
# from clusters and image url from the
# encodings pickle file.
# The face bounding box is increased a
# little more for training purposes and
# we also created the exact annotation for
# each face image (similar to darknet YOLO)
# to easily adapt the annotation for future
# use in supervised training
def GenerateImages(self, labels, OutputFolderName = "ClusteredFaces",
MontageOutputFolder = "Montage"):
output_directory = os.getcwd()
OutputFolder = os.path.join(output_directory, OutputFolderName)
if not os.path.exists(OutputFolder):
os.makedirs(OutputFolder)
else:
shutil.rmtree(OutputFolder)
time.sleep(0.5)
os.makedirs(OutputFolder)
MontageFolderPath = os.path.join(OutputFolder, MontageOutputFolder)
os.makedirs(MontageFolderPath)
data = pickle.loads(open(self.EncodingFilePath, "rb").read())
data = np.array(data)
labelIDs = np.unique(labels)
# loop over the unique face integers
for labelID in labelIDs:
# find all indexes into the `data` array
# that belong to the current label ID, then
# randomly sample a maximum of 25 indexes
# from the set
print("[INFO] faces for face ID: {}".format(labelID))
FaceFolder = os.path.join(OutputFolder, "Face_" + str(labelID))
os.makedirs(FaceFolder)
idxs = np.where(labels == labelID)[0]
# initialize the list of faces to
# include in the montage
portraits = []
# loop over the sampled indexes
counter = 1
for i in idxs:
# load the input image and extract the face ROI
image = cv2.imread(data[i]["imagePath"])
(o_top, o_right, o_bottom, o_left) = data[i]["loc"]
height, width, channel = image.shape
widthMargin = 100
heightMargin = 150
top = o_top - heightMargin
if top < 0: top = 0
bottom = o_bottom + heightMargin
if bottom > height: bottom = height
left = o_left - widthMargin
if left < 0: left = 0
right = o_right + widthMargin
if right > width: right = width
portrait = image[top:bottom, left:right]
if len(portraits) < 25:
portraits.append(portrait)
resizeUtils = ResizeUtils()
portrait = resizeUtils.rescale_by_width(portrait, 400)
FaceFilename = "face_" + str(counter) + ".jpg"
FaceImagePath = os.path.join(FaceFolder, FaceFilename)
cv2.imwrite(FaceImagePath, portrait)
widthMargin = 20
heightMargin = 20
top = o_top - heightMargin
if top < 0: top = 0
bottom = o_bottom + heightMargin
if bottom > height: bottom = height
left = o_left - widthMargin
if left < 0: left = 0
right = o_right + widthMargin
if right > width:
right = width
AnnotationFilename = "face_" + str(counter) + ".txt"
AnnotationFilePath = os.path.join(FaceFolder, AnnotationFilename)
f = open(AnnotationFilePath, 'w')
f.write(str(labelID) + ' ' +
str(left) + ' ' + str(top) + ' ' +
str(right) + ' ' + str(bottom) + "\n")
f.close()
counter += 1
montage = build_montages(portraits, (96, 120), (5, 5))[0]
MontageFilenamePath = os.path.join(
MontageFolderPath, "Face_" + str(labelID) + ".jpg")
cv2.imwrite(MontageFilenamePath, montage)
将文件另存为FaceClusteringLibrary.py ,其中将包含所有类定义。
以下是文件Driver.py ,它调用功能来创建管道。
Python3
# importing all classes from above Python file
from FaceClusteringLibrary import *
if __name__ == "__main__":
# Generate the frames from given video footage
framesGenerator = FramesGenerator("Footage.mp4")
framesGenerator.GenerateFrames("Frames")
# Design and run the face clustering pipeline
CurrentPath = os.getcwd()
FramesDirectory = "Frames"
FramesDirectoryPath = os.path.join(CurrentPath, FramesDirectory)
EncodingsFolder = "Encodings"
EncodingsFolderPath = os.path.join(CurrentPath, EncodingsFolder)
if os.path.exists(EncodingsFolderPath):
shutil.rmtree(EncodingsFolderPath, ignore_errors = True)
time.sleep(0.5)
os.makedirs(EncodingsFolderPath)
pipeline = Pipeline(
FramesProvider("Files source", sourcePath = FramesDirectoryPath) |
FaceEncoder("Encode faces") |
DatastoreManager("Store encoding",
encodingsOutputPath = EncodingsFolderPath),
n_threads = 3, quiet = True)
pbar = TqdmUpdate()
pipeline.run(update_callback = pbar.update)
print()
print('[INFO] Encodings extracted')
# Merge all the encodings pickle files into one
CurrentPath = os.getcwd()
EncodingsInputDirectory = "Encodings"
EncodingsInputDirectoryPath = os.path.join(
CurrentPath, EncodingsInputDirectory)
OutputEncodingPickleFilename = "encodings.pickle"
if os.path.exists(OutputEncodingPickleFilename):
os.remove(OutputEncodingPickleFilename)
picklesListCollator = PicklesListCollator(
EncodingsInputDirectoryPath)
picklesListCollator.GeneratePickle(
OutputEncodingPickleFilename)
# To manage any delay in file writing
time.sleep(0.5)
# Start clustering process and generate
# output images with annotations
EncodingPickleFilePath = "encodings.pickle"
faceClusterUtility = FaceClusterUtility(EncodingPickleFilePath)
faceImageGenerator = FaceImageGenerator(EncodingPickleFilePath)
labelIDs = faceClusterUtility.Cluster()
faceImageGenerator.GenerateImages(
labelIDs, "ClusteredFaces", "Montage")
蒙太奇输出:
故障排除 -
问题1:提取面部嵌入时,整个电脑都卡住了。
解决方案:解决方案是在从输入视频剪辑中提取帧时减小帧调整大小函数中的值。请记住,将值降低太多会导致人脸聚类不正确。我们可以引入一些正面检测并剪掉正面,而不是调整框架大小,以提高准确性。
问题2:运行管道时电脑变慢。
解决方案: CPU 将被最大程度地使用。要限制使用量,您可以减少在管道构造函数中指定的线程数。
问题3:输出聚类太不准确。
解决方案:这种情况的唯一原因可能是从输入视频剪辑中提取的帧将具有非常小的分辨率,或者帧数非常少(大约 7-8)。请获取一个包含明亮清晰的面部图像的视频剪辑,或者对于后一种情况,获取一个 2 分钟的视频或带有源代码的模块,用于视频帧提取。
有关使用的完整代码和附加文件,请参阅 Github 链接:https://github.com/cppxaxa/FaceRecognitionPipeline_GeeksForGeeks参考:
1. Adrian 的人脸聚类博文
2. PyPiper 指南
3.OpenCV手册
4.堆栈溢出