总和等于 X 的子集计数 |第 2 组
给定一个长度为N的数组arr[]和一个整数X ,任务是找到总和等于X的子集的数量。
例子:
Input: arr[] = {1, 2, 3, 3}, X = 6
Output: 3
Explanation: All the possible subsets are {1, 2, 3}, {1, 2, 3} and {3, 3}.
Input: arr[] = {1, 1, 1, 1}, X = 1
Output: 4
节省空间的方法:这个问题已经在这里的文章中讨论过。本文重点介绍仅使用O(X)空间的类似动态规划方法。上篇文章讨论的解决这个问题的标准DP关系为:
dp[i][C] = dp[i – 1][C – arr[i]] + dp[i – 1][C]
其中dp[i][C]存储子数组arr[0…i]的子集的数量,使得它们的和等于C 。可以注意到,第dp[i]个状态只需要第dp[i-1]个状态的数组值。因此,上述关系可以简化为:
dp[C] = dp[C – arr[i]] + dp[C]
这里需要注意的一点是,在计算dp[C]期间,变量C必须按降序迭代,以避免arr[i]在子集和计数中的重复性。
下面是上述方法的实现:
C++
// C++ implementation of the above approach
#include
using namespace std;
// Function to find the count of subsets
// having the given sum
int subsetSum(int arr[], int n, int sum)
{
// Initializing the dp-table
int dp[sum + 1] = {};
// Case for sum of elements in empty set
dp[0] = 1;
// Loop to iterate over array elements
for (int i = 0; i < n; i++) {
for (int j = sum; j >= 0; j--) {
// If j-arr[i] is a valid index
if (j - arr[i] >= 0) {
dp[j] = dp[j - arr[i]] + dp[j];
}
}
}
// Return answer
return dp[sum];
}
// Driven Code
int main()
{
int arr[] = { 1, 1, 1, 1 };
int N = sizeof(arr) / sizeof(arr[0]);
int sum = 1;
cout << subsetSum(arr, N, sum) << endl;
return 0;
}
Java
// Java implementation of the above approach
import java.util.*;
public class GFG
{
// Function to find the count of subsets
// having the given sum
static int subsetSum(int arr[], int n, int sum)
{
// Initializing the dp-table
int dp[] = new int[sum + 1];
// Case for sum of elements in empty set
dp[0] = 1;
// Loop to iterate over array elements
for (int i = 0; i < n; i++) {
for (int j = sum; j >= 0; j--) {
// If j-arr[i] is a valid index
if (j - arr[i] >= 0) {
dp[j] = dp[j - arr[i]] + dp[j];
}
}
}
// Return answer
return dp[sum];
}
// Driver code
public static void main(String args[])
{
int arr[] = { 1, 1, 1, 1 };
int N = arr.length;
int sum = 1;
System.out.println(subsetSum(arr, N, sum));
}
}
// This code is contributed by Samim Hossain Mondal.
Python3
# Python implementation of the above approach
# Function to find the count of subsets
# having the given sum
def subsetSum(arr, n, sum):
# Initializing the dp-table
dp = [0] * (sum + 1)
# Case for sum of elements in empty set
dp[0] = 1;
# Loop to iterate over array elements
for i in range(n):
for j in range(sum, 0, -1):
# If j-arr[i] is a valid index
if (j - arr[i] >= 0):
dp[j] = dp[j - arr[i]] + dp[j];
# Return answer
return dp[sum];
# Driven Code
arr = [1, 1, 1, 1];
N = len(arr)
sum = 1;
print(subsetSum(arr, N, sum))
# This code is contributed by gfgking.
C#
// C# implementation of the above approach
using System;
public class GFG
{
// Function to find the count of subsets
// having the given sum
static int subsetSum(int []arr, int n, int sum)
{
// Initializing the dp-table
int []dp = new int[sum + 1];
// Case for sum of elements in empty set
dp[0] = 1;
// Loop to iterate over array elements
for (int i = 0; i < n; i++) {
for (int j = sum; j >= 0; j--) {
// If j-arr[i] is a valid index
if (j - arr[i] >= 0) {
dp[j] = dp[j - arr[i]] + dp[j];
}
}
}
// Return answer
return dp[sum];
}
// Driver code
public static void Main(String []args)
{
int []arr = { 1, 1, 1, 1 };
int N = arr.Length;
int sum = 1;
Console.WriteLine(subsetSum(arr, N, sum));
}
}
// This code is contributed by shikhasingrajput
Javascript
输出
4
时间复杂度: O(N * X)
辅助空间: O(X)