📅  最后修改于: 2023-12-03 14:54:13.789000             🧑  作者: Mango
training=False
时仍然继续训练 - Python在深度学习中,我们通常需要对训练模型进行测试以评估其性能直接。而在测试过程中,我们不希望更新模型的参数。因此,我们可以将 training=False
传递给模型的 forward
方法,以确保模型不会更新参数。但在某些情况下,我们需要在测试时仍然继续训练模型。在这个教程中,我们将了解如何实现这一目标。
我们可以通过以下步骤来实现当 training=False
时仍然继续训练:
continue_training
并设为 False。class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
...
self.continue_training = False
forward
方法,根据 continue_training
的值来决定是否对模型进行训练。class MyModel(nn.Module):
def forward(self, x):
...
if self.continue_training:
optimizer.zero_grad()
loss.backward()
optimizer.step()
...
continue_training
的值设为 True。model.continue_training = True
model.eval()
with torch.no_grad():
for batch_idx, (data, target) in enumerate(test_loader):
output = model(data)
...
完成上述步骤后,我们就可以在测试时对模型进行运行,并在不更新参数的同时让模型继续训练。
以下是完整的示例代码:
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.fc1 = nn.Linear(784, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 10)
self.continue_training = False
def forward(self, x):
x = x.view(-1, 784)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
output = self.fc3(x)
if self.continue_training:
optimizer.zero_grad()
loss.backward()
optimizer.step()
return output
def train(model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = nn.functional.cross_entropy(output, target)
loss.backward()
optimizer.step()
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += nn.functional.cross_entropy(output, target, reduction='sum').item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
test_loss, correct, len(test_loader.dataset), accuracy))
def main():
batch_size = 64
test_batch_size = 1000
epochs = 10
learning_rate = 0.01
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('./data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('./data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=test_batch_size, shuffle=True)
model = MyModel().to(device)
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
for epoch in range(1, epochs + 1):
train(model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
model.continue_training = True
model.eval()
with torch.no_grad():
for batch_idx, (data, target) in enumerate(test_loader):
output = model(data)
if __name__ == '__main__':
main()
在此示例中,我们首先定义了一个名为 MyModel
的模型,并在其中添加了一个名为 continue_training
的标志变量。然后,我们重写了 forward
方法并根据 continue_training
的值来决定是否对模型进行训练。最后,我们在测试时将 continue_training
标志变量的值设为 True,并在不更新参数的同时让模型继续训练。