📅  最后修改于: 2023-12-03 15:36:34.592000             🧑  作者: Mango
神经风格迁移(Neural Style Transfer)是一种利用深度学习技术将一幅图像的“风格”应用在另一幅图像上的方法。深度学习模型首先学习如何表示一幅图像的内容和风格,然后将这两部分内容组合在一起,生成一幅新的图像。
TensorFlow 是一种流行的深度学习框架,可以用来实现神经风格迁移。
在使用 TensorFlow 进行神经风格迁移之前,需要安装 TensorFlow 并下载一幅“内容图像”和一幅“风格图像”。
可以使用以下代码片段安装 TensorFlow:
!pip install tensorflow
可以使用以下代码片段下载一幅“内容图像”和一幅“风格图像”:
!wget https://github.com/tensorflow/models/raw/master/research/slim/nets/mobilenet_v1/examples/flower_photos/daisy/5547758_eea9edfd54_n.jpg -O content.jpg
!wget https://github.com/tensorflow/models/raw/master/research/slim/nets/mobilenet_v1/examples/flower_photos/sunflowers/6953297_8576bf4ea3.jpg -O style.jpg
可以使用以下代码片段实现神经风格迁移:
import tensorflow as tf
import numpy as np
from PIL import Image
# 定义常量
CONTENT_IMAGE_PATH = 'content.jpg'
STYLE_IMAGE_PATH = 'style.jpg'
IMAGE_SIZE = 400
NUM_ITERATIONS = 200
CONTENT_WEIGHT = 1
STYLE_WEIGHT = 1e4
CONTENT_LAYER = 'conv4_2'
STYLE_LAYERS = ['conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1']
# 加载图像
def load_image(path):
image = Image.open(path)
image = np.array(image)
image = image.astype(np.float32)
image = np.expand_dims(image, axis=0)
image /= 255.0
image = tf.constant(image)
return image
# 保存图像
def save_image(image, path):
image = image.numpy()
image *= 255.0
image = np.squeeze(image, axis=0)
image = image.astype(np.uint8)
image = Image.fromarray(image)
image.save(path)
# 加载模型
def load_model():
model = tf.keras.applications.VGG19(include_top=False, weights='imagenet')
model.trainable = False
outputs = [model.get_layer(name).output for name in STYLE_LAYERS + [CONTENT_LAYER]]
model = tf.keras.models.Model(inputs=model.input, outputs=outputs)
return model
# 计算内容损失
def compute_content_loss(content_features, combination_features):
content_loss = tf.reduce_mean(tf.square(combination_features[CONTENT_LAYER] - content_features))
return CONTENT_WEIGHT * content_loss
# 计算风格损失
def compute_style_loss(style_features, combination_features):
style_loss = 0
for style_layer in STYLE_LAYERS:
style_loss += tf.reduce_mean(tf.square(combination_features[style_layer] - style_features[style_layer]))
return STYLE_WEIGHT * style_loss
# 计算总损失
def compute_loss(model, combination_image, content_image, style_image):
content_layer_size = tf.size(model(content_image)[CONTENT_LAYER])
combination_layer_size = tf.size(model(combination_image)[CONTENT_LAYER])
total_loss = 0
content_features = model(content_image)[CONTENT_LAYER]
combination_features = model(combination_image)[CONTENT_LAYER]
total_loss += compute_content_loss(content_features, combination_features)
style_features = {layer:model(style_image)[layer] for layer in STYLE_LAYERS}
total_loss += compute_style_loss(style_features, combination_features) / len(STYLE_LAYERS)
return total_loss
# 计算梯度
@tf.function()
def compute_gradient(model, combination_image, content_image, style_image):
with tf.GradientTape() as tape:
loss = compute_loss(model, combination_image, content_image, style_image)
gradient = tape.gradient(loss, combination_image)
return gradient, loss
# 迭代优化
def optimize(model, content_image, style_image):
combination_image = tf.Variable(tf.random.uniform(shape=[1, IMAGE_SIZE, IMAGE_SIZE, 3]))
optimizer = tf.optimizers.Adam(learning_rate=5, beta_1=0.99, epsilon=1e-1)
for i in range(NUM_ITERATIONS):
gradient, loss = compute_gradient(model, combination_image, content_image, style_image)
optimizer.apply_gradients([(gradient, combination_image)])
combination_image.assign(tf.clip_by_value(combination_image, 0, 1))
if i % 10 == 0:
print("Iteration %d: loss=%.2f" % (i, loss))
return combination_image
# 主函数
def main():
content_image = load_image(CONTENT_IMAGE_PATH)
style_image = load_image(STYLE_IMAGE_PATH)
model = load_model()
combination_image = optimize(model, content_image, style_image)
save_image(combination_image, 'output.jpg')
if __name__ == '__main__':
main()
运行上述代码之后,会生成一幅迁移后的图像,并在控制台上输出优化过程中的损失值。
可以使用以下代码片段查看生成的图像:
from IPython.display import Image
Image(filename='output.jpg')
使用 TensorFlow 进行神经风格迁移需要进行以下步骤:
最终可以生成一幅迁移后的图像,示例代码中生成的图像如下所示: