📅  最后修改于: 2023-12-03 15:04:10.859000             🧑  作者: Mango
In TensorFlow, the tensorflow.identity_n()
function is used to return a list of tensors. It takes a list of tensor objects as input and returns a list containing the same tensors.
The syntax of tensorflow.identity_n()
is as follows:
tensorflow.identity_n(inputs, name=None)
The tensorflow.identity_n()
function takes the following parameters:
inputs
: A list of tensor objects to be returned.name
(optional): A string name for the operation.The function returns a list of tensors that are identical to the input tensors.
import tensorflow as tf
# Define some tensor objects
x = tf.constant(2.0)
y = tf.constant(3.0)
z = tf.constant(4.0)
# Use tensorflow.identity_n() to return a list of tensors
output_tensors = tf.identity_n([x, y, z])
# Print the output tensors
print(output_tensors)
In the above example, we define three tensor objects x
, y
, and z
. Then, we pass these tensors to tensorflow.identity_n()
function which returns a list of tensors. Finally, we print the output tensors.
Output:
[<tf.Tensor 'Identity_1:0' shape=() dtype=float32>,
<tf.Tensor 'Identity_2:0' shape=() dtype=float32>,
<tf.Tensor 'Identity_3:0' shape=() dtype=float32>]
The tensorflow.identity_n()
function in Python TensorFlow is helpful when we need to return a list of tensors that are identical to a given list of tensors. It can be useful in various deep learning and machine learning scenarios.