📜  如何将 Pandas DataFrame 列转换为系列?

📅  最后修改于: 2022-05-13 01:55:02.053000             🧑  作者: Mango

如何将 Pandas DataFrame 列转换为系列?

在熊猫中可以将熊猫数据框的列转换为系列。有时需要将数据框的列转换为其他类型(如系列)以分析数据集。

案例1:将数据框的第一列转换为Series

Python3
# Importing pandas module
import pandas as pd
  
# Creating a dictionary 
dit = {'August': [10, 25, 34, 4.85, 71.2, 1.1], 
       'September': [4.8, 54, 68, 9.25, 58, 0.9], 
       'October': [78, 5.8, 8.52, 12, 1.6, 11], 
       'November': [100, 5.8, 50, 8.9, 77, 10] }
  
# Converting it to data frame
df = pd.DataFrame(data=dit)
  
# Original DataFrame
df


Python3
# Converting first column i.e 'August' to Series
ser1 = df.ix[:,0]
  
print("\n1st column as a Series:\n")
print(ser1)
  
# Checking type
print(type(ser1))


Python3
# Importing pandas module
import pandas as pd
  
# Creating a dictionary 
dit = {'August': [10, 25, 34, 4.85, 71.2, 1.1], 
       'September': [4.8, 54, 68, 9.25, 58, 0.9], 
       'October': [78, 5.8, 8.52, 12, 1.6, 11], 
       'November': [100, 5.8, 50, 8.9, 77, 10] }
  
# Converting it to data frame
df = pd.DataFrame(data=dit)
  
# Original DataFrame
df


Python3
# Converting last column i.e 'November' to Series
ser1 = df.ix[:,3]
  
print("\nLast column as a Series:\n")
print(ser1)
  
# Checking type
print(type(ser1))


Python3
# Importing pandas module
import pandas as pd
  
# Creating a dictionary 
dit = {'August': [10, 25, 34, 4.85, 71.2, 1.1], 
       'September': [4.8, 54, 68, 9.25, 58, 0.9], 
       'October': [78, 5.8, 8.52, 12, 1.6, 11], 
       'November': [100, 5.8, 50, 8.9, 77, 10] }
  
# Converting it to data frame
df = pd.DataFrame(data=dit)
  
# Original DataFrame
df


Python3
# Converting multiple columns 
# i.e 'September' and 'October' to Series
ser1 = df.ix[:,1]
ser2 = df.ix[:,2]
  
print("\nMultiple columns as a Series:\n")
print(ser1)
print()
print(ser2)
  
# Checking type
print(type(ser1))
print(type(ser2))


输出:

将第一列转换为系列。

蟒蛇3

# Converting first column i.e 'August' to Series
ser1 = df.ix[:,0]
  
print("\n1st column as a Series:\n")
print(ser1)
  
# Checking type
print(type(ser1))

输出:

在上面的示例中,我们将列“ August ”的类型数据框更改为Series

案例 2:将数据框的最后一列转换为Series

蟒蛇3

# Importing pandas module
import pandas as pd
  
# Creating a dictionary 
dit = {'August': [10, 25, 34, 4.85, 71.2, 1.1], 
       'September': [4.8, 54, 68, 9.25, 58, 0.9], 
       'October': [78, 5.8, 8.52, 12, 1.6, 11], 
       'November': [100, 5.8, 50, 8.9, 77, 10] }
  
# Converting it to data frame
df = pd.DataFrame(data=dit)
  
# Original DataFrame
df

输出:

将最后一列转换为系列。

蟒蛇3

# Converting last column i.e 'November' to Series
ser1 = df.ix[:,3]
  
print("\nLast column as a Series:\n")
print(ser1)
  
# Checking type
print(type(ser1))

输出:

在上面的示例中,我们将列“十一月”的类型数据框更改为系列

案例3:将数据框的多列转换为Series

蟒蛇3

# Importing pandas module
import pandas as pd
  
# Creating a dictionary 
dit = {'August': [10, 25, 34, 4.85, 71.2, 1.1], 
       'September': [4.8, 54, 68, 9.25, 58, 0.9], 
       'October': [78, 5.8, 8.52, 12, 1.6, 11], 
       'November': [100, 5.8, 50, 8.9, 77, 10] }
  
# Converting it to data frame
df = pd.DataFrame(data=dit)
  
# Original DataFrame
df

输出:

将多列转换为系列。

蟒蛇3

# Converting multiple columns 
# i.e 'September' and 'October' to Series
ser1 = df.ix[:,1]
ser2 = df.ix[:,2]
  
print("\nMultiple columns as a Series:\n")
print(ser1)
print()
print(ser2)
  
# Checking type
print(type(ser1))
print(type(ser2))

输出:

在上面的示例中,我们将 2 列的类型(即“九月”和“十月”)数据框更改为Series