📜  中国剩余定理|集合2(基于逆模的实现)

📅  最后修改于: 2021-05-08 16:34:17             🧑  作者: Mango

我们给了两个数组num [0..k-1]和rem [0..k-1]。在num [0..k-1]中,每对都是互质的(每对gcd为1)。我们需要找到最小正数x,使得:

x % num[0]    =  rem[0], 
     x % num[1]    =  rem[1], 
     .......................
     x % num[k-1]  =  rem[k-1]

例子:

Input:  num[] = {3, 4, 5}, rem[] = {2, 3, 1}
Output: 11
Explanation: 
11 is the smallest number such that:
  (1) When we divide it by 3, we get remainder 2. 
  (2) When we divide it by 4, we get remainder 3.
  (3) When we divide it by 5, we get remainder 1.

我们强烈建议您参考以下帖子作为此操作的先决条件。

中国剩余定理|设置1(简介)
我们已经讨论了寻找最小x的朴素解决方案。在本文中,讨论了找到x的有效解决方案。
该解决方案基于以下公式。

x =  ( ∑ (rem[i]*pp[i]*inv[i]) ) % prod
   Where 0 <= i <= n-1

rem[i] is given array of remainders

prod is product of all given numbers
prod = num[0] * num[1] * ... * num[k-1]

pp[i] is product of all divided by num[i]
pp[i] = prod / num[i]

inv[i] = Modular Multiplicative Inverse of 
         pp[i] with respect to num[i]

例子:

Let us take below example to understand the solution
   num[] = {3, 4, 5}, rem[] = {2, 3, 1}
   prod  = 60 
   pp[]  = {20, 15, 12}
   inv[] = {2,  3,  3}  // (20*2)%3 = 1, (15*3)%4 = 1
                        // (12*3)%5 = 1

   x = (rem[0]*pp[0]*inv[0] + rem[1]*pp[1]*inv[1] + 
        rem[2]*pp[2]*inv[2]) % prod
     = (2*20*2 + 3*15*3 + 1*12*3) % 60
     = (80 + 135 + 36) % 60
     = 11

请参阅此以获取上述公式的直观说明。

下面是上述公式的实现。我们可以使用此处讨论的基于扩展Euclid的方法来求逆模。

C++
// A C++ program to demonstrate
// working of Chinise remainder
// Theorem
#include 
using namespace std;
 
// Returns modulo inverse of a
// with respect to m using
// extended Euclid Algorithm.
// Refer below post for details:
// https://www.geeksforgeeks.org/
// multiplicative-inverse-under-modulo-m/
int inv(int a, int m)
{
    int m0 = m, t, q;
    int x0 = 0, x1 = 1;
 
    if (m == 1)
        return 0;
 
    // Apply extended Euclid Algorithm
    while (a > 1) {
        // q is quotient
        q = a / m;
 
        t = m;
 
        // m is remainder now, process same as
        // euclid's algo
        m = a % m, a = t;
 
        t = x0;
 
        x0 = x1 - q * x0;
 
        x1 = t;
    }
 
    // Make x1 positive
    if (x1 < 0)
        x1 += m0;
 
    return x1;
}
 
// k is size of num[] and rem[]. Returns the smallest
// number x such that:
// x % num[0] = rem[0],
// x % num[1] = rem[1],
// ..................
// x % num[k-2] = rem[k-1]
// Assumption: Numbers in num[] are pairwise coprime
// (gcd for every pair is 1)
int findMinX(int num[], int rem[], int k)
{
    // Compute product of all numbers
    int prod = 1;
    for (int i = 0; i < k; i++)
        prod *= num[i];
 
    // Initialize result
    int result = 0;
 
    // Apply above formula
    for (int i = 0; i < k; i++) {
        int pp = prod / num[i];
        result += rem[i] * inv(pp, num[i]) * pp;
    }
 
    return result % prod;
}
 
// Driver method
int main(void)
{
    int num[] = { 3, 4, 5 };
    int rem[] = { 2, 3, 1 };
    int k = sizeof(num) / sizeof(num[0]);
    cout << "x is " << findMinX(num, rem, k);
    return 0;
}


Java
// A Java program to demonstrate
// working of Chinise remainder
// Theorem
import java.io.*;
 
class GFG {
 
    // Returns modulo inverse of a
    // with respect to m using extended
    // Euclid Algorithm. Refer below post for details:
    // https://www.geeksforgeeks.org/
    // multiplicative-inverse-under-modulo-m/
    static int inv(int a, int m)
    {
        int m0 = m, t, q;
        int x0 = 0, x1 = 1;
 
        if (m == 1)
            return 0;
 
        // Apply extended Euclid Algorithm
        while (a > 1) {
            // q is quotient
            q = a / m;
 
            t = m;
 
            // m is remainder now, process
            // same as euclid's algo
            m = a % m;
            a = t;
 
            t = x0;
 
            x0 = x1 - q * x0;
 
            x1 = t;
        }
 
        // Make x1 positive
        if (x1 < 0)
            x1 += m0;
 
        return x1;
    }
 
    // k is size of num[] and rem[].
    // Returns the smallest number
    // x such that:
    // x % num[0] = rem[0],
    // x % num[1] = rem[1],
    // ..................
    // x % num[k-2] = rem[k-1]
    // Assumption: Numbers in num[] are pairwise
    // coprime (gcd for every pair is 1)
    static int findMinX(int num[], int rem[], int k)
    {
        // Compute product of all numbers
        int prod = 1;
        for (int i = 0; i < k; i++)
            prod *= num[i];
 
        // Initialize result
        int result = 0;
 
        // Apply above formula
        for (int i = 0; i < k; i++) {
            int pp = prod / num[i];
            result += rem[i] * inv(pp, num[i]) * pp;
        }
 
        return result % prod;
    }
 
    // Driver method
    public static void main(String args[])
    {
        int num[] = { 3, 4, 5 };
        int rem[] = { 2, 3, 1 };
        int k = num.length;
        System.out.println("x is " + findMinX(num, rem, k));
    }
}
 
// This code is contributed by nikita Tiwari.


Python3
# A Python3 program to demonstrate
# working of Chinise remainder
# Theorem
 
# Returns modulo inverse of a with
# respect to m using extended
# Euclid Algorithm. Refer below
# post for details:
# https://www.geeksforgeeks.org/
# multiplicative-inverse-under-modulo-m/
def inv(a, m) :
     
    m0 = m
    x0 = 0
    x1 = 1
 
    if (m == 1) :
        return 0
 
    # Apply extended Euclid Algorithm
    while (a > 1) :
        # q is quotient
        q = a // m
 
        t = m
 
        # m is remainder now, process
        # same as euclid's algo
        m = a % m
        a = t
 
        t = x0
 
        x0 = x1 - q * x0
 
        x1 = t
     
    # Make x1 positive
    if (x1 < 0) :
        x1 = x1 + m0
 
    return x1
 
# k is size of num[] and rem[].
# Returns the smallest
# number x such that:
# x % num[0] = rem[0],
# x % num[1] = rem[1],
# ..................
# x % num[k-2] = rem[k-1]
# Assumption: Numbers in num[]
# are pairwise coprime
# (gcd for every pair is 1)
def findMinX(num, rem, k) :
     
    # Compute product of all numbers
    prod = 1
    for i in range(0, k) :
        prod = prod * num[i]
 
    # Initialize result
    result = 0
 
    # Apply above formula
    for i in range(0,k):
        pp = prod // num[i]
        result = result + rem[i] * inv(pp, num[i]) * pp
     
     
    return result % prod
 
# Driver method
num = [3, 4, 5]
rem = [2, 3, 1]
k = len(num)
print( "x is " , findMinX(num, rem, k))
 
# This code is contributed by Nikita Tiwari.


C#
// A C# program to demonstrate
// working of Chinese remainder
// Theorem
using System;
 
class GFG
{
    // Returns modulo inverse of
    // 'a' with respect to 'm'
    // using extended Euclid Algorithm.
    // Refer below post for details:
    // https://www.geeksforgeeks.org/
    // multiplicative-inverse-under-modulo-m/
    static int inv(int a, int m)
    {
        int m0 = m, t, q;
        int x0 = 0, x1 = 1;
     
        if (m == 1)
        return 0;
     
        // Apply extended
        // Euclid Algorithm
        while (a > 1)
        {
            // q is quotient
            q = a / m;
     
            t = m;
     
            // m is remainder now,
            // process same as
            // euclid's algo
            m = a % m; a = t;
     
            t = x0;
     
            x0 = x1 - q * x0;
     
            x1 = t;
        }
     
        // Make x1 positive
        if (x1 < 0)
        x1 += m0;
     
        return x1;
    }
     
    // k is size of num[] and rem[].
    // Returns the smallest number
    // x such that:
    // x % num[0] = rem[0],
    // x % num[1] = rem[1],
    // ..................
    // x % num[k-2] = rem[k-1]
    // Assumption: Numbers in num[]
    // are pairwise coprime (gcd
    // for every pair is 1)
    static int findMinX(int []num,
                        int []rem,
                        int k)
    {
        // Compute product
        // of all numbers
        int prod = 1;
        for (int i = 0; i < k; i++)
            prod *= num[i];
     
        // Initialize result
        int result = 0;
     
        // Apply above formula
        for (int i = 0; i < k; i++)
        {
            int pp = prod / num[i];
            result += rem[i] *
                    inv(pp, num[i]) * pp;
        }
     
        return result % prod;
    }
     
    // Driver Code
    static public void Main ()
    {
        int []num = {3, 4, 5};
        int []rem = {2, 3, 1};
        int k = num.Length;
        Console.WriteLine("x is " +
                        findMinX(num, rem, k));
    }
}
 
// This code is contributed
// by ajit


PHP
 1)
    {
        // q is quotient
        $q = (int)($a / $m);
 
        $t = $m;
 
        // m is remainder now, process
        // same as euclid's algo
        $m = $a % $m;
        $a = $t;
 
        $t = $x0;
 
        $x0 = $x1 - $q * $x0;
 
        $x1 = $t;
    }
 
    // Make x1 positive
    if ($x1 < 0)
    $x1 += $m0;
 
    return $x1;
}
 
// k is size of num[] and rem[].
// Returns the smallest
// number x such that:
// x % num[0] = rem[0],
// x % num[1] = rem[1],
// ..................
// x % num[k-2] = rem[k-1]
// Assumption: Numbers in num[]
// are pairwise coprime (gcd for
// every pair is 1)
function findMinX($num, $rem, $k)
{
    // Compute product of all numbers
    $prod = 1;
    for ($i = 0; $i < $k; $i++)
        $prod *= $num[$i];
 
    // Initialize result
    $result = 0;
 
    // Apply above formula
    for ($i = 0; $i < $k; $i++)
    {
        $pp = (int)$prod / $num[$i];
        $result += $rem[$i] * inv($pp,
                    $num[$i]) * $pp;
    }
 
    return $result % $prod;
}
 
// Driver Code
$num = array(3, 4, 5);
$rem = array(2, 3, 1);
$k = sizeof($num);
echo "x is ". findMinX($num, $rem, $k);
 
// This code is contributed by mits
?>


Javascript


输出:

x is 11

时间复杂度: O(N * LogN)

辅助空间: O(1)