给定2个二叉搜索树,请从每棵树中选择一个节点,以使它们的绝对差最小。假设每个BST至少有一个节点。
例子:
Input : N1 = 7, N2 = 2
BST1 :
5
/ \
3 7
/ \ / \
2 4 6 8
BST2 :
11
\
13
Output : 3
8 is largest number in the first BST
and 11 is smallest in the second.
Thus, the final answer will be 11-8 = 3
Input : N1 = 4, N2 = 2
BST1 :
3
/ \
2 4
\
14
BST2 :
7
\
13
Output : 1
方法:
这个想法是使用两指针技术,并通过以下步骤迭代指针。
- 为两个BST创建正向迭代器。假设它们指向的节点的值分别为v 1和v 2 。
- 现在,在每个步骤中:
- 将final ans更新为min(ans,abs(v 1 -v 2 )) 。
- 如果v 1
2 ,则移动第一个BST的迭代器,否则移动第二个BST的迭代器。
- 重复上述步骤,直到两个BST都指向一个有效节点为止。
C++
// C++ implementation of the approach
#include
using namespace std;
// Node of Binary tree
struct node {
int data;
node* left;
node* right;
node(int data)
{
this->data = data;
left = NULL;
right = NULL;
}
};
// Function to iterate to the
// next element of the BST
void next(stack& it)
{
node* curr = it.top()->right;
it.pop();
while (curr != NULL)
it.push(curr), curr = curr->left;
}
// Function to find minimum difference
int minDiff(node* root1, node* root2)
{
// Iterator for two Binary Search Trees
stack it1, it2;
// Initializing first iterator
node* curr = root1;
while (curr != NULL)
it1.push(curr), curr = curr->left;
// Initializing second iterator
curr = root2;
while (curr != NULL)
it2.push(curr), curr = curr->left;
// Variable to store final answer
int ans = INT_MAX;
// Two pointer technique
while (it1.size() and it2.size()) {
// value it1 and it2 are pointing to
int v1 = it1.top()->data;
int v2 = it2.top()->data;
// Updating final answer
ans = min(abs(v1 - v2), ans);
// Case when v1 < v2
if (v1 < v2)
next(it1);
else
next(it2);
}
// Return ans
return ans;
}
// Driver code
int main()
{
// BST-1
/* 5
/ \
3 7
/ \ / \
2 4 6 8 */
node* root2 = new node(5);
root2->left = new node(3);
root2->right = new node(7);
root2->left->left = new node(2);
root2->left->right = new node(4);
root2->right->left = new node(6);
root2->right->right = new node(8);
// BST-2
/* 11
\
15
*/
node* root1 = new node(11);
root1->right = new node(15);
cout << minDiff(root1, root2);
return 0;
}
Java
// Java implementation of the approach
import java.util.*;
class GFG
{
// Node of Binary tree
static class node
{
int data;
node left;
node right;
node(int data)
{
this.data = data;
left = null;
right = null;
}
};
// Function to iterate to the
// next element of the BST
static void next(Stack it)
{
node curr = it.peek().right;
it.pop();
while (curr != null)
{
it.push(curr);
curr = curr.left;
}
}
// Function to find minimum difference
static int minDiff(node root1, node root2)
{
// Iterator for two Binary Search Trees
Stack it1 = new Stack();
Stack it2 = new Stack();
// Initializing first iterator
node curr = root1;
while (curr != null)
{
it1.push(curr);
curr = curr.left;
}
// Initializing second iterator
curr = root2;
while (curr != null)
{
it2.push(curr);
curr = curr.left;
}
// Variable to store final answer
int ans = Integer.MAX_VALUE;
// Two pointer technique
while (it1.size() > 0 && it2.size() > 0)
{
// value it1 and it2 are pointing to
int v1 = it1.peek().data;
int v2 = it2.peek().data;
// Updating final answer
ans = Math.min(Math.abs(v1 - v2), ans);
// Case when v1 < v2
if (v1 < v2)
next(it1);
else
next(it2);
}
// Return ans
return ans;
}
// Driver code
public static void main(String[] args)
{
// BST-1
/* 5
/ \
3 7
/ \ / \
2 4 6 8 */
node root2 = new node(5);
root2.left = new node(3);
root2.right = new node(7);
root2.left.left = new node(2);
root2.left.right = new node(4);
root2.right.left = new node(6);
root2.right.right = new node(8);
// BST-2
/* 11
\
15
*/
node root1 = new node(11);
root1.right = new node(15);
System.out.println(minDiff(root1, root2));
}
}
// This code is contributed by 29AjayKumar
Python3
# Python3 implementation of the approach
import sys
# Node of the binary tree
class node:
def __init__ (self, key):
self.data = key
self.left = None
self.right = None
# Function to iterate to the
# next element of the BST
def next(it):
curr = it[-1].right
del it[-1]
while (curr != None):
it.append(curr)
curr = curr.left
return it
# Function to find minimum difference
def minDiff(root1, root2):
# Iterator for two Binary Search Trees
it1, it2 = [], []
# Initializing first iterator
curr = root1
while (curr != None):
it1.append(curr)
curr = curr.left
# Initializing second iterator
curr = root2
while (curr != None):
it2.append(curr)
curr = curr.left
# Variable to store final answer
ans = sys.maxsize
# Two pointer technique
while (len(it1) > 0 and len(it2) > 0):
# Value it1 and it2 are pointing to
v1 = it1[-1].data
v2 = it2[-1].data
# Updating final answer
ans = min(abs(v1 - v2), ans)
# Case when v1 < v2
if (v1 < v2):
it1 = next(it1)
else:
it2 = next(it2)
# Return ans
return ans
# Driver code
if __name__ == '__main__':
# BST-1
# 5
# / \
# 3 7
# / \ / \
# 2 4 6 8
root2 = node(5)
root2.left = node(3)
root2.right = node(7)
root2.left.left = node(2)
root2.left.right = node(4)
root2.right.left = node(6)
root2.right.right = node(8)
# BST-2
# 11
# \
# 15
#
root1 = node(11)
root1.right = node(15)
print(minDiff(root1, root2))
# This code is contributed by mohit kumar 29
C#
// C# implementation of the approach
using System;
using System.Collections.Generic;
class GFG
{
// Node of Binary tree
class node
{
public int data;
public node left;
public node right;
public node(int data)
{
this.data = data;
left = null;
right = null;
}
};
// Function to iterate to the
// next element of the BST
static void next(Stack it)
{
node curr = it.Peek().right;
it.Pop();
while (curr != null)
{
it.Push(curr);
curr = curr.left;
}
}
// Function to find minimum difference
static int minDiff(node root1, node root2)
{
// Iterator for two Binary Search Trees
Stack it1 = new Stack();
Stack it2 = new Stack();
// Initializing first iterator
node curr = root1;
while (curr != null)
{
it1.Push(curr);
curr = curr.left;
}
// Initializing second iterator
curr = root2;
while (curr != null)
{
it2.Push(curr);
curr = curr.left;
}
// Variable to store readonly answer
int ans = int.MaxValue;
// Two pointer technique
while (it1.Count > 0 && it2.Count > 0)
{
// value it1 and it2 are pointing to
int v1 = it1.Peek().data;
int v2 = it2.Peek().data;
// Updating readonly answer
ans = Math.Min(Math.Abs(v1 - v2), ans);
// Case when v1 < v2
if (v1 < v2)
next(it1);
else
next(it2);
}
// Return ans
return ans;
}
// Driver code
public static void Main(String[] args)
{
// BST-1
/* 5
/ \
3 7
/ \ / \
2 4 6 8 */
node root2 = new node(5);
root2.left = new node(3);
root2.right = new node(7);
root2.left.left = new node(2);
root2.left.right = new node(4);
root2.right.left = new node(6);
root2.right.right = new node(8);
// BST-2
/* 11
\
15
*/
node root1 = new node(11);
root1.right = new node(15);
Console.WriteLine(minDiff(root1, root2));
}
}
// This code is contributed by Rajput-Ji
输出:
3
时间复杂度: O(N 1 + N 2 ),其中N 1和N 2分别是第一BST和第二BST的节点。
空间复杂度: O(H 1 + H 2 )其中H 1和H 2分别是第一BST和第二BST的高度。
如果您希望与行业专家一起参加现场课程,请参阅《 Geeks现场课程》和《 Geeks现场课程美国》。