Python中的 numpy.exp2()
numpy.exp2(array, out = None, where = True, cast = 'same_kind', order = 'K', dtype = None) :
这个数学函数可以帮助用户计算 2**x,因为所有 x 都是数组元素。
参数 :
array : [array_like]Input array or object whose elements, we need to test.
out : [ndarray, optional]Output array with same dimensions as Input array,
placed with result.
**kwargs : Allows you to pass keyword variable length of argument to a function.
It is used when we want to handle named argument in a function.
where : [array_like, optional]True value means to calculate the universal
functions(ufunc) at that position, False value means to leave the
value in the output alone.
返回 :
An array with 2**x(power of 2) for all x i.e. array elements
代码 1:工作
# Python program explaining
# exp2() function
import numpy as np
in_array = [1, 3, 5, 4]
print ("Input array : \n", in_array)
exp2_values = np.exp2(in_array)
print ("\n2**x values : \n", exp2_values)
输出 :
Input array :
[1, 3, 5, 4]
2**x values :
[ 2. 8. 32. 16.]
代码 2:图形表示
# Python program showing
# Graphical representation of
# exp2() function
import numpy as np
import matplotlib.pyplot as plt
in_array = [1, 2, 3, 4, 5 ,6]
out_array = np.exp2(in_array)
print("out_array : ", out_array)
y = [1, 2, 3, 4, 5 ,6]
plt.plot(in_array, y, color = 'blue', marker = "*")
# red for numpy.exp2()
plt.plot(out_array, y, color = 'red', marker = "o")
plt.title("numpy.exp2()")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
输出 :
out_array : [ 2. 4. 8. 16. 32. 64.]
参考 :
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.exp2.html
.