📅  最后修改于: 2020-10-15 04:48:46             🧑  作者: Mango
在此程序中,我们需要在给定的单链列表中找出最小值和最大值节点。
我们将维护两个变量min和max。最小值将保存最小值节点,最大值将保存最大值节点。在上面的示例中,1将是最小值节点,8将是最大值节点。下面给出了找到最大和最小节点的算法。
#Represent a node of the singly linked list
class Node:
def __init__(self,data):
self.data = data;
self.next = None;
class MinMax:
#Represent the head and tail of the singly linked list
def __init__(self):
self.head = None;
self.tail = None;
#addNode() will add a new node to the list
def addNode(self, data):
#Create a new node
newNode = Node(data);
#Checks if the list is empty
if(self.head == None):
#If list is empty, both head and tail will point to new node
self.head = newNode;
self.tail = newNode;
else:
#newNode will be added after tail such that tail's next will point to newNode
self.tail.next = newNode;
#newNode will become new tail of the list
self.tail = newNode;
#minNode() will find out the minimum value node in the list
def minNode(self):
current = self.head;
if(self.head == None):
print("List is empty");
else:
#Initializing min with head node data
min = self.head.data;
while(current != None):
#If current node's data is smaller than min
#Then, replace value of min with current node's data
if(min > current.data):
min = current.data;
current = current.next;
print("Minimum value node in the list: " + str(min));
#maxNode() will find out the maximum value node in the List
def maxNode(self):
current = self.head;
if(self.head == None):
print("List is empty");
else:
#Initializing max with head node data
max = self.head.data;
while(current != None):
#If current node's data is greater than max
#Then, replace value of max with current node's data
if(max < current.data):
max = current.data;
current= current.next;
print("Maximum value node in the list: " + str(max));
sList = MinMax();
#Adds data to the list
sList.addNode(5);
sList.addNode(8);
sList.addNode(1);
sList.addNode(6);
#Display the minimum value node in the list
sList.minNode();
#Display the maximum value node in the list
sList.maxNode();
输出:
Minimum value node in the list: 1
Maximum value node in the list: 8
#include
//Represent a node of the singly linked list
struct node{
int data;
struct node *next;
};
//Represent the head and tail of the singly linked list
struct node *head, *tail = NULL;
//addNode() will add a new node to the list
void addNode(int data) {
//Create a new node
struct node *newNode = (struct node*)malloc(sizeof(struct node));
newNode->data = data;
newNode->next = NULL;
//Checks if the list is empty
if(head == NULL) {
//If list is empty, both head and tail will point to new node
head = newNode;
tail = newNode;
}
else {
//newNode will be added after tail such that tail's next will point to newNode
tail->next = newNode;
//newNode will become new tail of the list
tail = newNode;
}
}
//minNode() will find out the minimum value node in the list
void minNode() {
struct node *current = head;
int min;
if(head == NULL) {
printf("List is empty \n");
}
else {
//Initializing min with head node data
min = head->data;
while(current != NULL){
//If current node's data is smaller than min
//Then, replace value of min with current node's data
if(min > current->data) {
min = current->data;
}
current= current->next;
}
printf("Minimum value node in the list: %d\n", min);
}
}
//maxNode() will find out the maximum value node in the list
void maxNode() {
struct node *current = head;
int max;
if(head == NULL) {
printf("List is empty \n");
}
else {
//Initializing max with head node data
max = head->data;
while(current != NULL){
//If current node's data is greater than max
//Then, replace value of max with current node's data
if(max < current->data) {
max = current->data;
}
current = current->next;
}
printf("Maximum value node in the list: %d\n", max);
}
}
int main()
{
//Adds data to the list
addNode(5);
addNode(8);
addNode(1);
addNode(6);
//Display the minimum value node in the list
minNode();
//Display the maximum value node in the list
maxNode();
return 0;
}
输出:
Minimum value node in the list: 1
Maximum value node in the list: 8
public class MinMax {
//Represent a node of the singly linked list
class Node{
int data;
Node next;
public Node(int data) {
this.data = data;
this.next = null;
}
}
//Represent the head and tail of the singly linked list
public Node head = null;
public Node tail = null;
//addNode() will add a new node to the list
public void addNode(int data) {
//Create a new node
Node newNode = new Node(data);
//Checks if the list is empty
if(head == null) {
//If list is empty, both head and tail will point to new node
head = newNode;
tail = newNode;
}
else {
//newNode will be added after tail such that tail's next will point to newNode
tail.next = newNode;
//newNode will become new tail of the list
tail = newNode;
}
}
//minNode() will find out the minimum value node in the list
public void minNode() {
Node current = head;
int min;
if(head == null) {
System.out.println("List is empty");
}
else {
//Initializing min with head node data
min = head.data;
while(current != null){
//If current node's data is smaller than min
//Then, replace value of min with current node's data
if(min > current.data) {
min = current.data;
}
current= current.next;
}
System.out.println("Minimum value node in the list: "+ min);
}
}
//maxNode() will find out the maximum value node in the list
public void maxNode() {
Node current = head;
int max;
if(head == null) {
System.out.println("List is empty");
}
else {
//Initializing max with head node data
max = head.data;
while(current != null){
//If current node's data is greater than max
//Then, replace value of max with current node's data
if(max < current.data) {
max = current.data;
}
current = current.next;
}
System.out.println("Maximum value node in the list: "+ max);
}
}
public static void main(String[] args) {
MinMax sList = new MinMax();
//Adds data to the list
sList.addNode(5);
sList.addNode(8);
sList.addNode(1);
sList.addNode(6);
//Display the minimum value node in the list
sList.minNode();
//Display the maximum value node in the list
sList.maxNode();
}
}
输出:
Minimum value node in the list: 1
Maximum value node in the list: 8
using System;
public class CreateList
{
//Represent a node of the singly linked list
public class Node{
public T data;
public Node next;
public Node(T value) {
data = value;
next = null;
}
}
public class MinMax where T : IComparable{
//Represent the head and tail of the singly linked list
public Node head = null;
public Node tail = null;
//addNode() will add a new node to the list
public void addNode(T data) {
//Create a new node
Node newNode = new Node(data);
//Checks if the list is empty
if(head == null) {
//If list is empty, both head and tail will point to new node
head = newNode;
tail = newNode;
}
else {
//newNode will be added after tail such that tail's next will point to newNode
tail.next = newNode;
//newNode will become new tail of the list
tail = newNode;
}
}
//minNode() will find out the minimum value node in the list
public void minNode() {
Node current = head;
T min;
if(head == null) {
Console.WriteLine("List is empty");
}
else {
//Initializing min with head node data
min = head.data;
while(current != null){
//If current node's data is smaller than min
//Then, replace value of min with current node's data
if(min.CompareTo(current.data) > 0) {
min = current.data;
}
current= current.next;
}
Console.WriteLine("Minimum value node in the list: "+ min);
}
}
//maxNode() will find out the maximum value node in the list
public void maxNode() {
Node current = head;
T max;
if(head == null) {
Console.WriteLine("List is empty");
}
else {
//Initializing max with head node data
max = head.data;
while(current != null){
//If current node's data is greater than max
//Then, replace value of max with current node's data
if(max.CompareTo(current.data) < 0) {
max = current.data;
}
current = current.next;
}
Console.WriteLine("Maximum value node in the list: "+ max);
}
}
}
public static void Main()
{
MinMax sList = new MinMax();
//Adds data to the list
sList.addNode(5);
sList.addNode(8);
sList.addNode(1);
sList.addNode(6);
//Display the minimum value node in the list
sList.minNode();
//Display the maximum value node in the list
sList.maxNode();
}
}
输出:
Minimum value node in the list: 1
Maximum value node in the list: 8
data = $data;
$this->next = NULL;
}
}
class MinMax{
//Represent the head and tail of the singly linked list
public $head;
public $tail;
function __construct(){
$this->head = NULL;
$this->tail = NULL;
}
//addNode() will add a new node to the list
function addNode($data) {
//Create a new node
$newNode = new Node($data);
//Checks if the list is empty
if($this->head == NULL) {
//If list is empty, both head and tail will point to new node
$this->head = $newNode;
$this->tail = $newNode;
}
else {
//newNode will be added after tail such that tail's next will point to newNode
$this->tail->next = $newNode;
//newNode will become new tail of the list
$this->tail = $newNode;
}
}
//minNode() will find out the minimum value node in the list
function minNode() {
$current = $this->head;
if($this->head == null) {
print("List is empty
");
}
else {
//Initializing min with head node data
$min = $this->head->data;
while($current != null){
//If current node's data is smaller than min
//Then, replace value of min with current node's data
if($min > $current->data) {
$min = $current->data;
}
$current = $current->next;
}
print("Minimum value node in the list: ". $min);
}
}
//maxNode() will find out the maximum value node in the list
function maxNode() {
$current = $this->head;
if($this->head == null) {
print("List is empty
");
}
else {
//Initializing max with head node data
$max = $this->head->data;
while($current != null){
//If current node's data is greater than max
//Then, replace value of max with current node's data
if($max < $current->data) {
$max = $current->data;
}
$current = $current->next;
}
print("
Maximum value node in the list: ". $max);
}
}
}
$sList = new MinMax();
//Adds data to the list
$sList->addNode(5);
$sList->addNode(8);
$sList->addNode(1);
$sList->addNode(6);
//Display the minimum value node in the list
$sList->minNode();
//Display the maximum value node in the list
$sList->maxNode();
?>
输出:
Minimum value node in the list: 1
Maximum value node in the list: 8