📅  最后修改于: 2020-10-15 04:49:20             🧑  作者: Mango
在此程序中,我们需要按升序对给定单链列表的节点进行排序。
原始清单:
排序列表:
为了完成此任务,我们维护两个指针:current和index。最初,当前指向头节点,索引将指向当前旁边的节点。通过将当前数据与索引数据进行比较,遍历列表直到当前指向null。如果当前数据大于索引数据,则在它们之间交换数据。在上面的示例中,current最初将指向9,index将指向7。由于9大于7,因此交换数据。继续此过程,直到整个列表按升序排序。
#Represent a node of the singly linked list
class Node:
def __init__(self,data):
self.data = data;
self.next = None;
class SortList:
#Represent the head and tail of the singly linked list
def __init__(self):
self.head = None;
self.tail = None;
#addNode() will add a new node to the list
def addNode(self, data):
#Create a new node
newNode = Node(data);
#Checks if the list is empty
if(self.head == None):
#If list is empty, both head and tail will point to new node
self.head = newNode;
self.tail = newNode;
else:
#newNode will be added after tail such that tail's next will point to newNode
self.tail.next = newNode;
#newNode will become new tail of the list
self.tail = newNode;
#sortList() will sort nodes of the list in ascending order
def sortList(self):
#Node current will point to head
current = self.head;
index = None;
if(self.head == None):
return;
else:
while(current != None):
#Node index will point to node next to current
index = current.next;
while(index != None):
#If current node's data is greater than index's node data, swap the data between them
if(current.data > index.data):
temp = current.data;
current.data = index.data;
index.data = temp;
index = index.next;
current = current.next;
#display() will display all the nodes present in the list
def display(self):
#Node current will point to head
current = self.head;
if(self.head == None):
print("List is empty");
return;
while(current != None):
#Prints each node by incrementing pointer
print(current.data),
current = current.next;
print ""
sList = SortList();
#Adds data to the list
sList.addNode(9);
sList.addNode(7);
sList.addNode(2);
sList.addNode(5);
sList.addNode(4);
#Displaying original list
print("Original list: ");
sList.display();
#Sorting list
sList.sortList();
#Displaying sorted list
print("Sorted list: ");
sList.display();
输出:
Original list:
9 7 2 5 4
Sorted list:
2 4 5 7 9
#include
//Represent a node of the singly linked list
struct node{
int data;
struct node *next;
};
//Represent the head and tail of the singly linked list
struct node *head, *tail = NULL;
//addNode() will add a new node to the list
void addNode(int data) {
//Create a new node
struct node *newNode = (struct node*)malloc(sizeof(struct node));
newNode->data = data;
newNode->next = NULL;
//Checks if the list is empty
if(head == NULL) {
//If list is empty, both head and tail will point to new node
head = newNode;
tail = newNode;
}
else {
//newNode will be added after tail such that tail's next will point to newNode
tail->next = newNode;
//newNode will become new tail of the list
tail = newNode;
}
}
//sortList() will sort nodes of the list in ascending order
void sortList() {
//Node current will point to head
struct node *current = head, *index = NULL;
int temp;
if(head == NULL) {
return;
}
else {
while(current != NULL) {
//Node index will point to node next to current
index = current->next;
while(index != NULL) {
//If current node's data is greater than index's node data, swap the data between them
if(current->data > index->data) {
temp = current->data;
current->data = index->data;
index->data = temp;
}
index = index->next;
}
current = current->next;
}
}
}
//display() will display all the nodes present in the list
void display() {
//Node current will point to head
struct node *current = head;
if(head == NULL) {
printf("List is empty \n");
return;
}
while(current != NULL) {
//Prints each node by incrementing pointer
printf("%d ", current->data);
current = current->next;
}
printf("\n");
}
int main()
{
//Adds data to the list
addNode(9);
addNode(7);
addNode(2);
addNode(5);
addNode(4);
//Displaying original list
printf("Original list: \n");
display();
//Sorting list
sortList();
//Displaying sorted list
printf("Sorted list: \n");
display();
return 0;
}
输出:
Original list:
9 7 2 5 4
Sorted list:
2 4 5 7 9
public class SortList {
//Represent a node of the singly linked list
class Node{
int data;
Node next;
public Node(int data) {
this.data = data;
this.next = null;
}
}
//Represent the head and tail of the singly linked list
public Node head = null;
public Node tail = null;
//addNode() will add a new node to the list
public void addNode(int data) {
//Create a new node
Node newNode = new Node(data);
//Checks if the list is empty
if(head == null) {
//If list is empty, both head and tail will point to new node
head = newNode;
tail = newNode;
}
else {
//newNode will be added after tail such that tail's next will point to newNode
tail.next = newNode;
//newNode will become new tail of the list
tail = newNode;
}
}
//sortList() will sort nodes of the list in ascending order
public void sortList() {
//Node current will point to head
Node current = head, index = null;
int temp;
if(head == null) {
return;
}
else {
while(current != null) {
//Node index will point to node next to current
index = current.next;
while(index != null) {
//If current node's data is greater than index's node data, swap the data between them
if(current.data > index.data) {
temp = current.data;
current.data = index.data;
index.data = temp;
}
index = index.next;
}
current = current.next;
}
}
}
//display() will display all the nodes present in the list
public void display() {
//Node current will point to head
Node current = head;
if(head == null) {
System.out.println("List is empty");
return;
}
while(current != null) {
//Prints each node by incrementing pointer
System.out.print(current.data + " ");
current = current.next;
}
System.out.println();
}
public static void main(String[] args) {
SortList sList = new SortList();
//Adds data to the list
sList.addNode(9);
sList.addNode(7);
sList.addNode(2);
sList.addNode(5);
sList.addNode(4);
//Displaying original list
System.out.println("Original list: ");
sList.display();
//Sorting list
sList.sortList();
//Displaying sorted list
System.out.println("Sorted list: ");
sList.display();
}
}
输出:
Original list:
9 7 2 5 4
Sorted list:
2 4 5 7 9
using System;
public class CreateList
{
//Represent a node of the singly linked list
public class Node{
public T data;
public Node next;
public Node(T value) {
data = value;
next = null;
}
}
public class SortList where T : IComparable{
//Represent the head and tail of the singly linked list
public Node head = null;
public Node tail = null;
//addNode() will add a new node to the list
public void addNode(T data) {
//Create a new node
Node newNode = new Node(data);
//Checks if the list is empty
if(head == null) {
//If list is empty, both head and tail will point to new node
head = newNode;
tail = newNode;
}
else {
//newNode will be added after tail such that tail's next will point to newNode
tail.next = newNode;
//newNode will become new tail of the list
tail = newNode;
}
}
//sortList() will sort nodes of the list in ascending order
public void sortList() {
//Node current will point to head
Node current = head, index = null;
T temp;
if(head == null) {
return;
}
else {
while(current != null) {
//Node index will point to node next to current
index = current.next;
while(index != null) {
//If current node's data is greater than index's node data, swap the data between them
if(current.data.CompareTo(index.data) > 0) {
temp = current.data;
current.data = index.data;
index.data = temp;
}
index = index.next;
}
current = current.next;
}
}
}
//display() will display all the nodes present in the list
public void display() {
//Node current will point to head
Node current = head;
if(head == null) {
Console.WriteLine("List is empty");
return;
}
while(current != null) {
//Prints each node by incrementing pointer
Console.Write(current.data + " ");
current = current.next;
}
Console.WriteLine();
}
}
public static void Main()
{
SortList sList = new SortList();
//Adds data to the list
sList.addNode(9);
sList.addNode(7);
sList.addNode(2);
sList.addNode(5);
sList.addNode(4);
//Displaying original list
Console.WriteLine("Original list: ");
sList.display();
//Sorting list
sList.sortList();
//Displaying sorted list
Console.WriteLine("Sorted list: ");
sList.display();
}
}
输出:
Original list:
9 7 2 5 4
Sorted list:
2 4 5 7 9
data = $data;
$this->next = NULL;
}
}
class SortList{
//Represent the head and tail of the singly linked list
public $head;
public $tail;
function __construct(){
$this->head = NULL;
$this->tail = NULL;
}
//addNode() will add a new node to the list
function addNode($data) {
//Create a new node
$newNode = new Node($data);
//Checks if the list is empty
if($this->head == NULL) {
//If list is empty, both head and tail will point to new node
$this->head = $newNode;
$this->tail = $newNode;
}
else {
//newNode will be added after tail such that tail's next will point to newNode
$this->tail->next = $newNode;
//newNode will become new tail of the list
$this->tail = $newNode;
}
}
//sortList() will sort nodes of the list in ascending order
function sortList() {
//Node current will point to head
$current = $this->head;
$index = null;
if($this->head == null) {
return;
}
else {
while($current != null) {
//Node index will point to node next to current
$index = $current->next;
while($index != null) {
//If current node's data is greater than index's node data, swap the data between them
if($current->data > $index->data) {
$temp = $current->data;
$current->data = $index->data;
$index->data = $temp;
}
$index = $index->next;
}
$current = $current->next;
}
}
}
//display() will display all the nodes present in the list
function display() {
//Node current will point to head
$current = $this->head;
if($this->head == NULL) {
print("List is empty
");
return;
}
while($current != NULL) {
//Prints each node by incrementing pointer
print($current->data . " ");
$current = $current->next;
}
print("
");
}
}
$sList = new SortList();
//Adds data to the list
$sList->addNode(9);
$sList->addNode(7);
$sList->addNode(2);
$sList->addNode(5);
$sList->addNode(4);
//Displaying original list
print("Original list:
");
$sList->display();
//Sorting list
$sList->sortList();
//Displaying sorted list
print("Sorted list:
");
$sList->display();
?>
输出:
Original list:
9 7 2 5 4
Sorted list:
2 4 5 7 9