📌  相关文章
📜  查找从根到树的给定节点的路径以进行多个查询

📅  最后修改于: 2021-06-25 21:31:45             🧑  作者: Mango

给定一棵树,其中N个顶点的编号从0N – 1 (0节点是根节点)。同样,给定q个查询,其中包含树中的节点。任务是为多个查询找到从根节点到给定节点的路径。

例子:

Input: N = 6, q[] = {2, 4}
Tree:
                    0
                   / \
                  1   2
                  |
                  3
                 / \
                4   5
Output:
0 2
0 1 3 4
The path from root node to node 2 is 0 -> 2.
The path from root node to node 4 is 0 -> 1 -> 3 -> 4.

方法:从任何根顶点到任何顶点“ i”的路径都是从根顶点到其父代的路径,然后是父代本身。这可以通过修改树的广度优先遍历来实现。在路径列表中,对于每个未访问的顶点,将其父级路径的副本添加到其列表中,然后将父级添加到列表中。

下面是上述方法的实现:

C++
// C++ implementation of the approach
#include 
using namespace std;
 
const int sz = 1e5;
 
// Adjacency list representation
// of the tree
vector tree[sz];
 
// Boolean array to mark all the
// vertices which are visited
bool vis[sz];
 
// Array of vector where ith index
// stores the path from the root
// node to the ith node
vector path[sz];
 
// Utility function to create an
// edge between two vertices
void addEdge(int a, int b)
{
 
    // Add a to b's list
    tree[a].push_back(b);
 
    // Add b to a's list
    tree[b].push_back(a);
}
 
// Modified Breadth-First Function
void bfs(int node)
{
 
    // Create a queue of {child, parent}
    queue > qu;
 
    // Push root node in the front of
    // the queue and mark as visited
    qu.push({ node, -1 });
    vis[node] = true;
 
    while (!qu.empty()) {
        pair p = qu.front();
 
        // Dequeue a vertex from queue
        qu.pop();
        vis[p.first] = true;
 
        // Get all adjacent vertices of the dequeued
        // vertex s. If any adjacent has not
        // been visited then enqueue it
 
        for (int child : tree[p.first]) {
            if (!vis[child]) {
                qu.push({ child, p.first });
 
                // Path from the root to this vertex is
                // the path from root to the parent
                // of this vertex followed by the
                // parent itself
                path[child] = path[p.first];
                path[child].push_back(p.first);
            }
        }
    }
}
 
// Utility Function to print the
// path from root to given node
void displayPath(int node)
{
    vector ans = path[node];
    for (int k : ans) {
        cout << k << " ";
    }
    cout << node << '\n';
}
 
// Driver code
int main()
{
 
    // Number of vertices
    int n = 6;
 
    addEdge(0, 1);
    addEdge(0, 2);
    addEdge(1, 3);
    addEdge(3, 4);
    addEdge(3, 5);
 
    // Calling modified bfs function
    bfs(0);
 
    // Display paths from root vertex
    // to the given vertices
    displayPath(2);
    displayPath(4);
    displayPath(5);
 
    return 0;
}


Java
// Java implementation of the approach
import java.util.*;
 
@SuppressWarnings("unchecked")
class GFG {
 
    static class Pair {
        T first;
        V second;
 
        Pair() {
        }
 
        Pair(T first, V second) {
            this.first = first;
            this.second = second;
        }
    }
 
    static int sz = (int) 1e5;
 
    // Adjacency list representation
    // of the tree
    static Vector[] tree = new Vector[sz];
 
    // Boolean array to mark all the
    // vertices which are visited
    static boolean[] vis = new boolean[sz];
 
    // Array of vector where ith index
    // stores the path from the root
    // node to the ith node
    static Vector[] path = new Vector[sz];
 
    // Utility function to create an
    // edge between two vertices
    static void addEdge(int a, int b) {
 
        // Add a to b's list
        tree[a].add(b);
 
        // Add b to a's list
        tree[b].add(a);
    }
 
    // Modified Breadth-First Function
    static void bfs(int node) {
 
        // Create a queue of {child, parent}
        Queue> qu = new LinkedList<>();
 
        // Push root node in the front of
        // the queue and mark as visited
        qu.add(new Pair<>(node, -1));
        vis[node] = true;
 
        while (!qu.isEmpty()) {
 
            // Dequeue a vertex from queue
            Pair p = qu.poll();
 
            vis[p.first] = true;
 
            // Get all adjacent vertices of the dequeued
            // vertex s. If any adjacent has not
            // been visited then enqueue it
 
            for (int child : tree[p.first]) {
                if (!vis[child]) {
                    qu.add(new Pair<>(child, p.first));
 
                    // Path from the root to this vertex is
                    // the path from root to the parent
                    // of this vertex followed by the
                    // parent itself
                    path[child] = (Vector) path[p.first].clone();
                    path[child].add(p.first);
                }
            }
        }
    }
 
    // Utility Function to print the
    // path from root to given node
    static void displayPath(int node) {
        for (int k : path[node]) {
            System.out.print(k + " ");
        }
        System.out.println(node);
    }
 
    // Driver Code
    public static void main(String[] args) {
        for (int i = 0; i < sz; i++) {
            tree[i] = new Vector<>();
            path[i] = new Vector<>();
            vis[i] = false;
        }
 
        // Number of vertices
        int n = 6;
 
        addEdge(0, 1);
        addEdge(0, 2);
        addEdge(1, 3);
        addEdge(3, 4);
        addEdge(3, 5);
 
        // Calling modified bfs function
        bfs(0);
 
        // Display paths from root vertex
        // to the given vertices
        displayPath(2);
        displayPath(4);
        displayPath(5);
    }
}
 
// This code is contributed by
// sanjeev2552


Python3
# Python3 implementation of the approach
from collections import deque as queue
 
sz = 7
 
# Adjacency list representation
# of the tree
tree = [[] for i in range(sz)]
 
# Boolean array to mark all the
# vertices which are visited
vis = [False] * sz
 
# Array of vector where ith index
# stores the path from the root
# node to the ith node
path = [[] for i in range(sz)]
 
# Utility function to create an
# edge between two vertices
def addEdge(a, b):
 
    # Add a to b's list
    tree[a].append(b)
 
    # Add b to a's list
    tree[b].append(a)
 
# Modified Breadth-First Function
def bfs(node):
 
    # Create a queue of {child, parent}
    qu = queue()
 
    # Push root node in the front of
    # the queue and mark as visited
    qu.append([node, -1])
    vis[node] = True
 
    while (len(qu) > 0):
        p = qu.popleft()
         
        #print(p,p[0],p[1])
 
        # Dequeue a vertex from queue
        # qu.pop()
        vis[p[0]] = True
 
        # Get all adjacent vertices of
        # the dequeued vertex s. If any
        # adjacent has not been visited
        # then enqueue it
        for child in tree[p[0]]:
            if (vis[child] == False):
                qu.append([child, p[0]])
 
                # Path from the root to this
                # vertex is the path from root
                # to the parent of this vertex
                # followed by the parent itself
                for u in path[p[0]]:
                    path[child].append(u)
 
                path[child].append(p[0])
                 
                #print(child,":",path[0])
 
# Utility Function to prthe
# path from root to given node
def displayPath(node):
     
    ans = path[node]
    for k in ans:
        print(k, end = " ")
         
    print(node)
 
# Driver code
if __name__ == '__main__':
 
    # Number of vertices
    n = 6
 
    addEdge(0, 1)
    addEdge(0, 2)
    addEdge(1, 3)
    addEdge(3, 4)
    addEdge(3, 5)
 
    # Calling modified bfs function
    bfs(0)
 
    # Display paths from root vertex
    # to the given vertices
    displayPath(2)
    displayPath(4)
    displayPath(5)
 
# This code is contributed by mohit kumar 29


输出:
0 2
0 1 3 4
0 1 3 5


如果您希望与行业专家一起参加现场课程,请参阅《 Geeks现场课程》和《 Geeks现场课程美国》。