给定一棵二叉树,任务是打印其直接子节点为其因子的节点数。
例子:
Input:
1
/ \
15 20
/ \ / \
3 5 4 2
\ /
2 3
Output: 2
Explanation:
Children of 15 (3, 5)
are factors of 15
Children of 20 (4, 2)
are factors of 20
Input:
7
/ \
210 14
/ \ \
70 14 30
/ \ / \
2 5 10 15
/
23
Output:3
Explanation:
Children of 210 (70, 14)
are factors of 210
Children of 70 (2, 5)
are factors of 70
Children of 30 (10, 15)
are factors of 30
方法:为了解决这个问题,我们需要以 Level Order 方式遍历给定的二叉树,对于每个有两个孩子的节点,检查两个孩子是否都有作为当前节点值的因子的值。如果为真,则计算这些节点并在最后打印。
下面是上述方法的实现:
C++
// C++ program for Counting nodes
// whose immediate children
// are its factors
#include
using namespace std;
// A Tree node
struct Node {
int key;
struct Node *left, *right;
};
// Utility function to create a new node
Node* newNode(int key)
{
Node* temp = new Node;
temp->key = key;
temp->left = temp->right = NULL;
return (temp);
}
// Function to check and print if
// immediate children of a node
// are its factors or not
bool areChilrenFactors(
struct Node* parent,
struct Node* a,
struct Node* b)
{
if (parent->key % a->key == 0
&& parent->key % b->key == 0)
return true;
else
return false;
}
// Function to get the
// count of full Nodes in
// a binary tree
unsigned int getCount(struct Node* node)
{
// If tree is empty
if (!node)
return 0;
queue q;
// Do level order traversal
// starting from root
int count = 0;
// Store the number of nodes
// with both children as factors
q.push(node);
while (!q.empty()) {
struct Node* temp = q.front();
q.pop();
if (temp->left && temp->right) {
if (areChilrenFactors(
temp, temp->left,
temp->right))
count++;
}
if (temp->left != NULL)
q.push(temp->left);
if (temp->right != NULL)
q.push(temp->right);
}
return count;
}
// Function to find total no of nodes
// In a given binary tree
int findSize(struct Node* node)
{
// Base condition
if (node == NULL)
return 0;
return 1
+ findSize(node->left)
+ findSize(node->right);
}
// Driver Code
int main()
{
/* 10
/ \
40 36
/ \
18 12
/ \ / \
2 6 3 4
/
7
*/
// Create Binary Tree as shown
Node* root = newNode(10);
root->left = newNode(40);
root->right = newNode(36);
root->right->left = newNode(18);
root->right->right = newNode(12);
root->right->left->left = newNode(2);
root->right->left->right = newNode(6);
root->right->right->left = newNode(3);
root->right->right->right = newNode(4);
root->right->right->right->left = newNode(7);
// Print all nodes having
// children as their factors
cout << getCount(root) << endl;
return 0;
}
Java
// Java program for Counting nodes
// whose immediate children
// are its factors
import java.util.*;
class GFG{
// A Tree node
static class Node {
int key;
Node left, right;
};
// Utility function to create a new node
static Node newNode(int key)
{
Node temp = new Node();
temp.key = key;
temp.left = temp.right = null;
return (temp);
}
// Function to check and print if
// immediate children of a node
// are its factors or not
static boolean areChilrenFactors(
Node parent,
Node a,
Node b)
{
if (parent.key % a.key == 0
&& parent.key % b.key == 0)
return true;
else
return false;
}
// Function to get the
// count of full Nodes in
// a binary tree
static int getCount(Node node)
{
// If tree is empty
if (node==null)
return 0;
Queue q = new LinkedList();
// Do level order traversal
// starting from root
int count = 0;
// Store the number of nodes
// with both children as factors
q.add(node);
while (!q.isEmpty()) {
Node temp = q.peek();
q.remove();
if (temp.left!=null && temp.right!=null) {
if (areChilrenFactors(
temp, temp.left,
temp.right))
count++;
}
if (temp.left != null)
q.add(temp.left);
if (temp.right != null)
q.add(temp.right);
}
return count;
}
// Function to find total no of nodes
// In a given binary tree
static int findSize(Node node)
{
// Base condition
if (node == null)
return 0;
return 1
+ findSize(node.left)
+ findSize(node.right);
}
// Driver Code
public static void main(String[] args)
{
/* 10
/ \
40 36
/ \
18 12
/ \ / \
2 6 3 4
/
7
*/
// Create Binary Tree as shown
Node root = newNode(10);
root.left = newNode(40);
root.right = newNode(36);
root.right.left = newNode(18);
root.right.right = newNode(12);
root.right.left.left = newNode(2);
root.right.left.right = newNode(6);
root.right.right.left = newNode(3);
root.right.right.right = newNode(4);
root.right.right.right.left = newNode(7);
// Print all nodes having
// children as their factors
System.out.print(getCount(root) +"\n");
}
}
// This code is contributed by sapnasingh4991
Python3
# Python3 program for counting nodes
# whose immediate children
# are its factors
from collections import deque as queue
# A Binary Tree Node
class Node:
def __init__(self, key):
self.data = key
self.left = None
self.right = None
# Function to check and print if
# immediate children of a node
# are its factors or not
def areChildrenFactors(parent, a, b):
if (parent.data % a.data == 0 and
parent.data % b.data == 0):
return True
else:
return False
# Function to get the
# count of full Nodes in
# a binary tree
def getCount(node):
# Base Case
if (not node):
return 0
q = queue()
# Do level order traversal
# starting from root
count = 0
# Store the number of nodes
# with both children as factors
q.append(node)
while (len(q) > 0):
temp = q.popleft()
#q.pop()
if (temp.left and temp.right):
if (areChildrenFactors(temp, temp.left,
temp.right)):
count += 1
if (temp.left != None):
q.append(temp.left)
if (temp.right != None):
q.append(temp.right)
return count
# Function to find total
# number of nodes
# In a given binary tree
def findSize(node):
# Base condition
if (node == None):
return 0
return (1 + findSize(node.left) +
findSize(node.right))
# Driver Code
if __name__ == '__main__':
# /* 10
# / \
# 40 36
# / \
# 18 12
# / \ / \
# 2 6 3 4
# /
# 7
# */
# Create Binary Tree
root = Node(10)
root.left = Node(40)
root.right = Node(36)
root.right.left = Node(18)
root.right.right = Node(12)
root.right.left.left = Node(2)
root.right.left.right = Node(6)
root.right.right.left = Node(3)
root.right.right.right = Node(4)
root.right.right.right.left = Node(7)
# Print all nodes having
# children as their factors
print(getCount(root))
# This code is contributed by mohit kumar 29
C#
// C# program for Counting nodes
// whose immediate children
// are its factors
using System;
using System.Collections.Generic;
class GFG{
// A Tree node
class Node {
public int key;
public Node left, right;
};
// Utility function to create a new node
static Node newNode(int key)
{
Node temp = new Node();
temp.key = key;
temp.left = temp.right = null;
return (temp);
}
// Function to check and print if
// immediate children of a node
// are its factors or not
static bool areChilrenFactors(
Node parent,
Node a,
Node b)
{
if (parent.key % a.key == 0
&& parent.key % b.key == 0)
return true;
else
return false;
}
// Function to get the
// count of full Nodes in
// a binary tree
static int getCount(Node node)
{
// If tree is empty
if (node == null)
return 0;
List q = new List();
// Do level order traversal
// starting from root
int count = 0;
// Store the number of nodes
// with both children as factors
q.Add(node);
while (q.Count != 0) {
Node temp = q[0];
q.RemoveAt(0);
if (temp.left!=null && temp.right != null) {
if (areChilrenFactors(
temp, temp.left,
temp.right))
count++;
}
if (temp.left != null)
q.Add(temp.left);
if (temp.right != null)
q.Add(temp.right);
}
return count;
}
// Function to find total no of nodes
// In a given binary tree
static int findSize(Node node)
{
// Base condition
if (node == null)
return 0;
return 1
+ findSize(node.left)
+ findSize(node.right);
}
// Driver Code
public static void Main(String[] args)
{
/* 10
/ \
40 36
/ \
18 12
/ \ / \
2 6 3 4
/
7
*/
// Create Binary Tree as shown
Node root = newNode(10);
root.left = newNode(40);
root.right = newNode(36);
root.right.left = newNode(18);
root.right.right = newNode(12);
root.right.left.left = newNode(2);
root.right.left.right = newNode(6);
root.right.right.left = newNode(3);
root.right.right.right = newNode(4);
root.right.right.right.left = newNode(7);
// Print all nodes having
// children as their factors
Console.Write(getCount(root) +"\n");
}
}
// This code is contributed by sapnasingh4991
输出:
3
如果您想与行业专家一起参加直播课程,请参阅Geeks Classes Live