给定两个数组arr1[]和arr2[] ,任务是找到arr1[]的最长子数组,它是arr2[] 的子序列。
例子:
Input: arr1[] = {4, 2, 3, 1, 5, 6}, arr2[] = {3, 1, 4, 6, 5, 2}
Output: 3
Explanation: The longest subarray of arr1[] which is a subsequence in arr2[] is {3, 1, 5}
Input: arr1[] = {3, 2, 4, 7, 1, 5, 6, 8, 10, 9}, arr2[] = {9, 2, 4, 3, 1, 5, 6, 8, 10, 7}
Output: 5
Explanation: The longest subarray in arr1[] which is a subsequence in arr2[] is {1, 5, 6, 8, 10}.
方法:思路是用动态规划来解决这个问题。请按照以下步骤解决问题:
- 初始化一个DP[][]表,其中DP[i][j]存储最长子数组的长度,直到arr1[] 中的第i个索引,它是arr2[] 中直到第j个索引的子序列。
- 现在,遍历两个数组并执行以下操作:
- 情况 1:如果arr1[i]和arr2[j]相等,则将DP[i – 1][j – 1]加1 ,因为arr1[i]和arr2[j]对所需的最长子数组长度有贡献。
- 情况 2:如果arr1[i]和arr2[j]不相等,则设置DP[i][j] = DP[i – 1][j] 。
- 最后,打印DP[][]表中存在的最大值作为所需答案。
下面是上述方法的实现:
C++
// C++ program for the above approach
#include
using namespace std;
// Function to find the length of the
// longest subarray in arr1[] which
// is a subsequence in arr2[]
int LongSubarrSeq(int arr1[], int arr2[], int M, int N)
{
// Length of the array arr1[]
// Length of the required
// longest subarray
int maxL = 0;
// Initialize DP[]array
int DP[M + 1][N + 1];
// Traverse array arr1[]
for (int i = 1; i <= M; i++)
{
// Traverse array arr2[]
for (int j = 1; j <= N; j++)
{
if (arr1[i - 1] == arr2[j - 1])
{
// arr1[i - 1] contributes to
// the length of the subarray
DP[i][j] = 1 + DP[i - 1][j - 1];
}
// Otherwise
else
{
DP[i][j] = DP[i][j - 1];
}
}
}
// Find the maximum value
// present in DP[][]
for (int i = 1; i <= M; i++)
{
for (int j = 1; j <= N; j++)
{
maxL = max(maxL, DP[i][j]);
}
}
// Return the result
return maxL;
}
// Driver Code
int main()
{
int arr1[] = { 4, 2, 3, 1, 5, 6 };
int M = sizeof(arr1) / sizeof(arr1[0]);
int arr2[] = { 3, 1, 4, 6, 5, 2 };
int N = sizeof(arr2) / sizeof(arr2[0]);
// Function call to find the length
// of the longest required subarray
cout << LongSubarrSeq(arr1, arr2, M, N) <
Java
// Java program
// for the above approach
import java.io.*;
class GFG {
// Function to find the length of the
// longest subarray in arr1[] which
// is a subsequence in arr2[]
private static int LongSubarrSeq(
int[] arr1, int[] arr2)
{
// Length of the array arr1[]
int M = arr1.length;
// Length of the array arr2[]
int N = arr2.length;
// Length of the required
// longest subarray
int maxL = 0;
// Initialize DP[]array
int[][] DP = new int[M + 1][N + 1];
// Traverse array arr1[]
for (int i = 1; i <= M; i++) {
// Traverse array arr2[]
for (int j = 1; j <= N; j++) {
if (arr1[i - 1] == arr2[j - 1]) {
// arr1[i - 1] contributes to
// the length of the subarray
DP[i][j] = 1 + DP[i - 1][j - 1];
}
// Otherwise
else {
DP[i][j] = DP[i][j - 1];
}
}
}
// Find the maximum value
// present in DP[][]
for (int i = 1; i <= M; i++) {
for (int j = 1; j <= N; j++) {
maxL = Math.max(maxL, DP[i][j]);
}
}
// Return the result
return maxL;
}
// Driver Code
public static void main(String[] args)
{
int[] arr1 = { 4, 2, 3, 1, 5, 6 };
int[] arr2 = { 3, 1, 4, 6, 5, 2 };
// Function call to find the length
// of the longest required subarray
System.out.println(LongSubarrSeq(arr1, arr2));
}
}
Python3
# Python program
# for the above approach
# Function to find the length of the
# longest subarray in arr1 which
# is a subsequence in arr2
def LongSubarrSeq(arr1, arr2):
# Length of the array arr1
M = len(arr1);
# Length of the array arr2
N = len(arr2);
# Length of the required
# longest subarray
maxL = 0;
# Initialize DParray
DP = [[0 for i in range(N + 1)] for j in range(M + 1)];
# Traverse array arr1
for i in range(1, M + 1):
# Traverse array arr2
for j in range(1, N + 1):
if (arr1[i - 1] == arr2[j - 1]):
# arr1[i - 1] contributes to
# the length of the subarray
DP[i][j] = 1 + DP[i - 1][j - 1];
# Otherwise
else:
DP[i][j] = DP[i][j - 1];
# Find the maximum value
# present in DP
for i in range(M + 1):
# Traverse array arr2
for j in range(1, N + 1):
maxL = max(maxL, DP[i][j]);
# Return the result
return maxL;
# Driver Code
if __name__ == '__main__':
arr1 = [4, 2, 3, 1, 5, 6];
arr2 = [3, 1, 4, 6, 5, 2];
# Function call to find the length
# of the longest required subarray
print(LongSubarrSeq(arr1, arr2));
# This code contributed by shikhasingrajput
C#
// C# program for the above approach
using System;
class GFG{
// Function to find the length of the
// longest subarray in arr1[] which
// is a subsequence in arr2[]
private static int LongSubarrSeq(int[] arr1,
int[] arr2)
{
// Length of the array arr1[]
int M = arr1.Length;
// Length of the array arr2[]
int N = arr2.Length;
// Length of the required
// longest subarray
int maxL = 0;
// Initialize DP[]array
int[,] DP = new int[M + 1, N + 1];
// Traverse array arr1[]
for(int i = 1; i <= M; i++)
{
// Traverse array arr2[]
for(int j = 1; j <= N; j++)
{
if (arr1[i - 1] == arr2[j - 1])
{
// arr1[i - 1] contributes to
// the length of the subarray
DP[i, j] = 1 + DP[i - 1, j - 1];
}
// Otherwise
else
{
DP[i, j] = DP[i, j - 1];
}
}
}
// Find the maximum value
// present in DP[][]
for(int i = 1; i <= M; i++)
{
for(int j = 1; j <= N; j++)
{
maxL = Math.Max(maxL, DP[i, j]);
}
}
// Return the result
return maxL;
}
// Driver Code
static public void Main()
{
int[] arr1 = { 4, 2, 3, 1, 5, 6 };
int[] arr2 = { 3, 1, 4, 6, 5, 2 };
// Function call to find the length
// of the longest required subarray
Console.WriteLine(LongSubarrSeq(arr1, arr2));
}
}
// This code is contributed by susmitakundugoaldanga
Javascript
输出:
3
时间复杂度: O(M * N)
辅助空间: O(M * N)
如果您想与行业专家一起参加直播课程,请参阅Geeks Classes Live