给定一个整数K和两个由N和M 个整数组成的数组A[]和B[] ,任务是根据以下规则最大化可以从任一数组前面删除的元素数:
- 从数组A[]和B[]的前面移除一个元素,使得被移除元素的值最多为 K 。
- 将K的值减少所移除元素的值。
例子:
Input: K = 7, A[] = {2, 4, 7, 3}, B[] = {1, 9, 3, 4, 5}
Output: 3
Explanation:
Operation 1: Choose element from the array A[] and decrease K by A[0](=2), then value of K becomes = (7 – 2) = 5.
Operation 2: Choose element from the array B[] and decrease K by B[0](=1), then value of K becomes = (5 – 1) = 4.
Operation 3: Choose element from the array A[] and decrease K by A[1](=4), then value of K becomes = (4 – 4) = 4.
After the above operations, no more element can be removed. Therefore, print 3.
Input: K = 9, A[] = {12, 10, 1, 2, 3}, B[] = {15, 19, 3, 4, 5}
Output: 0
方法:给定的问题可以通过使用前缀和和二进制搜索找到的全部项目可能J可采取从堆栈B,从堆栈一个以我的项目后,返回的结果是(i + j)的最大值来解决。按照以下步骤解决给定的问题:
- 查找数组A[]和B[] 的前缀和。
- 初始化一个变量,比如count为0 ,它存储可以采取的最大项目。
- 使用变量i在范围[0, N] 上遍历数组A[]并执行以下步骤:
- 如果A[i]的值大于K ,则跳出循环。
- 从堆栈A中取出i 个项目后的剩余金额存储在一个变量中, rem为K – A[i] 。
- 对数组B执行二分搜索,以找到可以从堆栈B 中以rem数量获取的最大项目j (在从堆栈A 中获取i 个元素之后)。
- 将i + j的最大值存储在变量count 中。
- 完成以上步骤后,打印count的值作为结果。
下面是上述方法的实现:
C++
// C++ program for the above approach
#include
using namespace std;
// Function to find the maximum number
// of items that can be removed from
// both the arrays
void maxItems(int n, int m, int a[],
int b[], int K)
{
// Stores the maximum item count
int count = 0;
// Stores the prefix sum of the
// cost of items
int A[n + 1];
int B[m + 1];
// Insert the item cost 0 at the
// front of the arrays
A[0] = 0;
B[0] = 0;
// Build the prefix sum for
// the array A[]
for (int i = 1; i <= n; i++) {
// Update the value of A[i]
A[i] = a[i - 1] + A[i - 1];
}
// Build the prefix sum for
// the array B[]
for (int i = 1; i <= m; i++) {
// Update the value of B[i]
B[i] = b[i - 1] + B[i - 1];
}
// Iterate through each item
// of the array A[]
for (int i = 0; i <= n; i++) {
// If A[i] exceeds K
if (A[i] > K)
break;
// Store the remaining amount
// after taking top i elements
// from the array A
int rem = K - A[i];
// Store the number of items
// possible to take from the
// array B[]
int j = 0;
// Store low and high bounds
// for binary search
int lo = 0, hi = m;
// Binary search to find
// number of item that
// can be taken from stack
// B in rem amount
while (lo <= hi) {
// Calculate the mid value
int mid = (lo + hi) / 2;
if (B[mid] <= rem) {
// Update the value
// of j and lo
j = mid;
lo = mid + 1;
}
else {
// Update the value
// of the hi
hi = mid - 1;
}
}
// Store the maximum of total
// item count
count = max(j + i, count);
}
// Print the result
cout << count;
}
// Driver Code
int main()
{
int n = 4, m = 5, K = 7;
int A[n] = { 2, 4, 7, 3 };
int B[m] = { 1, 9, 3, 4, 5 };
maxItems(n, m, A, B, K);
return 0;
}
Java
// Java program for the above approach
import java.io.*;
import java.util.*;
class GFG{
// Function to find the maximum number
// of items that can be removed from
// both the arrays
static void maxItems(int n, int m, int a[],
int b[], int K)
{
// Stores the maximum item count
int count = 0;
// Stores the prefix sum of the
// cost of items
int A[] = new int[n + 1];
int B[] = new int[m + 1];
// Insert the item cost 0 at the
// front of the arrays
A[0] = 0;
B[0] = 0;
// Build the prefix sum for
// the array A[]
for(int i = 1; i <= n; i++)
{
// Update the value of A[i]
A[i] = a[i - 1] + A[i - 1];
}
// Build the prefix sum for
// the array B[]
for(int i = 1; i <= m; i++)
{
// Update the value of B[i]
B[i] = b[i - 1] + B[i - 1];
}
// Iterate through each item
// of the array A[]
for(int i = 0; i <= n; i++)
{
// If A[i] exceeds K
if (A[i] > K)
break;
// Store the remaining amount
// after taking top i elements
// from the array A
int rem = K - A[i];
// Store the number of items
// possible to take from the
// array B[]
int j = 0;
// Store low and high bounds
// for binary search
int lo = 0, hi = m;
// Binary search to find
// number of item that
// can be taken from stack
// B in rem amount
while (lo <= hi)
{
// Calculate the mid value
int mid = (lo + hi) / 2;
if (B[mid] <= rem)
{
// Update the value
// of j and lo
j = mid;
lo = mid + 1;
}
else
{
// Update the value
// of the hi
hi = mid - 1;
}
}
// Store the maximum of total
// item count
count = Math.max(j + i, count);
}
// Print the result
System.out.print(count);
}
// Driver Code
public static void main (String[] args)
{
int n = 4, m = 5, K = 7;
int A[] = { 2, 4, 7, 3 };
int B[] = { 1, 9, 3, 4, 5 };
maxItems(n, m, A, B, K);
}
}
// This code is contributed by sanjoy_62
Python3
# Python3 program for the above approach
# Function to find the maximum number
# of items that can be removed from
# both the arrays
def maxItems(n, m, a, b, K):
# Stores the maximum item count
count = 0
# Stores the prefix sum of the
# cost of items
A = [0 for i in range(n + 1)]
B = [0 for i in range(m + 1)]
# Build the prefix sum for
# the array A[]
for i in range(1, n + 1, 1):
# Update the value of A[i]
A[i] = a[i - 1] + A[i - 1]
# Build the prefix sum for
# the array B[]
for i in range(1, m + 1, 1):
# Update the value of B[i]
B[i] = b[i - 1] + B[i - 1]
# Iterate through each item
# of the array A[]
for i in range(n + 1):
# If A[i] exceeds K
if (A[i] > K):
break
# Store the remaining amount
# after taking top i elements
# from the array A
rem = K - A[i]
# Store the number of items
# possible to take from the
# array B[]
j = 0
# Store low and high bounds
# for binary search
lo = 0
hi = m
# Binary search to find
# number of item that
# can be taken from stack
# B in rem amount
while (lo <= hi):
# Calculate the mid value
mid = (lo + hi) // 2
if (B[mid] <= rem):
# Update the value
# of j and lo
j = mid
lo = mid + 1
else:
# Update the value
# of the hi
hi = mid - 1
# Store the maximum of total
# item count
count = max(j + i, count)
# Print the result
print(count)
# Driver Code
if __name__ == '__main__':
n = 4
m = 5
K = 7
A = [ 2, 4, 7, 3 ]
B = [ 1, 9, 3, 4, 5 ]
maxItems(n, m, A, B, K)
# This code is contributed by bgangwar59
C#
// C# program for the above approach
using System;
class GFG
{
// Function to find the maximum number
// of items that can be removed from
// both the arrays
static void maxItems(int n, int m, int[] a,
int[] b, int K)
{
// Stores the maximum item count
int count = 0;
// Stores the prefix sum of the
// cost of items
int[] A = new int[n + 1];
int[] B= new int[m + 1];
// Insert the item cost 0 at the
// front of the arrays
A[0] = 0;
B[0] = 0;
// Build the prefix sum for
// the array A[]
for(int i = 1; i <= n; i++)
{
// Update the value of A[i]
A[i] = a[i - 1] + A[i - 1];
}
// Build the prefix sum for
// the array B[]
for(int i = 1; i <= m; i++)
{
// Update the value of B[i]
B[i] = b[i - 1] + B[i - 1];
}
// Iterate through each item
// of the array A[]
for(int i = 0; i <= n; i++)
{
// If A[i] exceeds K
if (A[i] > K)
break;
// Store the remaining amount
// after taking top i elements
// from the array A
int rem = K - A[i];
// Store the number of items
// possible to take from the
// array B[]
int j = 0;
// Store low and high bounds
// for binary search
int lo = 0, hi = m;
// Binary search to find
// number of item that
// can be taken from stack
// B in rem amount
while (lo <= hi)
{
// Calculate the mid value
int mid = (lo + hi) / 2;
if (B[mid] <= rem)
{
// Update the value
// of j and lo
j = mid;
lo = mid + 1;
}
else
{
// Update the value
// of the hi
hi = mid - 1;
}
}
// Store the maximum of total
// item count
count = Math.Max(j + i, count);
}
// Print the result
Console.Write(count);
}
// Driver code
public static void Main(String []args)
{
int n = 4, m = 5, K = 7;
int[] A = { 2, 4, 7, 3 };
int[] B = { 1, 9, 3, 4, 5 };
maxItems(n, m, A, B, K);
}
}
// This code is contributed by code_hunt.
Javascript
3
时间复杂度: O(N * log(M))
辅助空间: O(N + M)
如果您想与行业专家一起参加直播课程,请参阅Geeks Classes Live