给定一个由N 个正整数和一个整数K组成的数组A[] ,任务是找到总和大于或等于K的最小子数组的长度。如果不存在这样的子数组,则打印-1 。
例子:
Input: arr[] = {3, 1, 7, 1, 2}, K = 11
Output: 3
Explanation:
The smallest subarray with sum ≥ K(= 11) is {3, 1, 7}.
Input: arr[] = {2, 3, 5, 4, 1}, K = 11
Output: 3
Explanation:
The minimum possible subarray is {3, 5, 4}.
Naive and Binary Search Approach:最简单的方法和基于二进制搜索的方法来解决问题,请参考给定数组中的最小子数组,其总和大于或等于 K。
递归方法:解决问题的最简单方法是使用递归。请按照以下步骤解决问题:
- 如果 K ≤ 0:打印-1,因为无法获得这样的子数组。
- 如果数组的总和等于K ,则打印数组的长度作为所需答案。
- 如果数组中的第一个元素大于K ,则打印 1 作为所需答案。
- 否则,通过考虑子数组中的当前元素以及不包括它来继续查找最小子数组。
- 对遍历的每个元素重复上述步骤。
下面是上述方法的实现:
C++14
// C++14 program for the above approach
#include
using namespace std;
// Function to find the smallest subarray
// sum greater than or equal to target
int smallSumSubset(vector data,
int target, int maxVal)
{
int sum = 0;
for(int i : data)
sum += i;
// Base Case
if (target <= 0)
return 0;
// If sum of the array
// is less than target
else if (sum < target)
return maxVal;
// If target is equal to
// the sum of the array
else if (sum == target)
return data.size();
// Required condition
else if (data[0] >= target)
return 1;
else if (data[0] < target)
{
vector temp;
for(int i = 1; i < data.size(); i++)
temp.push_back(data[i]);
return min(smallSumSubset(temp, target,
maxVal),
1 + smallSumSubset(temp, target -
data[0], maxVal));
}
}
// Driver Code
int main()
{
vector data = { 3, 1, 7, 1, 2 };
int target = 11;
int val = smallSumSubset(data, target,
data.size() + 1);
if (val > data.size())
cout << -1;
else
cout << val;
}
// This code is contributed by mohit kumar 29
Java
// Java program for the above approach
import java.util.*;
import java.lang.*;
class GFG{
// Function to find the smallest subarray
// sum greater than or equal to target
static int smallSumSubset(List data,
int target, int maxVal)
{
int sum = 0;
for(Integer i : data)
sum += i;
// Base Case
if (target <= 0)
return 0;
// If sum of the array
// is less than target
else if (sum < target)
return maxVal;
// If target is equal to
// the sum of the array
else if (sum == target)
return data.size();
// Required condition
else if (data.get(0) >= target)
return 1;
else if (data.get(0) < target)
{
List temp = new ArrayList<>();
for(int i = 1; i < data.size(); i++)
temp.add(data.get(i));
return Math.min(smallSumSubset(temp, target,
maxVal),
1 + smallSumSubset(temp, target -
data.get(0), maxVal));
}
return -1;
}
// Driver Code
public static void main (String[] args)
{
List data = Arrays.asList(3, 1, 7, 1, 2);
int target = 11;
int val = smallSumSubset(data, target,
data.size() + 1);
if (val > data.size())
System.out.println(-1);
else
System.out.println(val);
}
}
// This code is contributed by offbeat
Python3
# Python3 program for the above approach
# Function to find the smallest subarray
# sum greater than or equal to target
def smallSumSubset(data, target, maxVal):
# base condition
# Base Case
if target <= 0:
return 0
# If sum of the array
# is less than target
elif sum(data) < target:
return maxVal
# If target is equal to
# the sum of the array
elif sum(data) == target:
return len(data)
# Required condition
elif data[0] >= target:
return 1
elif data[0] < target:
return min(smallSumSubset(data[1:], \
target, maxVal),
1 + smallSumSubset(data[1:], \
target-data[0], maxVal))
# Driver Code
data = [3, 1, 7, 1, 2]
target = 11
val = smallSumSubset(data, target, len(data)+1)
if val > len(data):
print(-1)
else:
print(val)
C#
// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG{
// Function to find the smallest subarray
// sum greater than or equal to target
static int smallSumSubset(List data,
int target, int maxVal)
{
int sum = 0;
foreach(int i in data)
sum += i;
// Base Case
if (target <= 0)
return 0;
// If sum of the array
// is less than target
else if (sum < target)
return maxVal;
// If target is equal to
// the sum of the array
else if (sum == target)
return data.Count;
// Required condition
else if (data[0] >= target)
return 1;
else if (data[0] < target)
{
List temp = new List();
for(int i = 1; i < data.Count; i++)
temp.Add(data[i]);
return Math.Min(smallSumSubset(temp, target,
maxVal),
1 + smallSumSubset(temp, target -
data[0], maxVal));
}
return 0;
}
// Driver code
static void Main()
{
List data = new List();
data.Add(3);
data.Add(1);
data.Add(7);
data.Add(1);
data.Add(2);
int target = 11;
int val = smallSumSubset(data, target,
data.Count + 1);
if (val > data.Count)
Console.Write(-1);
else
Console.Write(val);
}
}
// This code is contributed by divyeshrabadiya07
Javascript
C++
// C++ program for the above approach
#include
using namespace std;
// Function to find the smallest subarray
// with sum greater than or equal target
int minlt(vector arr, int target, int n)
{
// DP table to store the
// computed subproblems
vector> dp(arr.size() + 1 ,
vector (target + 1, -1));
for(int i = 0; i < arr.size() + 1; i++)
// Initialize first
// column with 0
dp[i][0] = 0;
for(int j = 0; j < target + 1; j++)
// Initialize first
// row with 0
dp[0][j] = INT_MAX;
for(int i = 1; i <= arr.size(); i++)
{
for(int j = 1; j <= target; j++)
{
// Check for invalid condition
if (arr[i - 1] > j)
{
dp[i][j] = dp[i - 1][j];
}
else
{
// Fill up the dp table
dp[i][j] = min(dp[i - 1][j],
(dp[i][j - arr[i - 1]]) !=
INT_MAX ?
(dp[i][j - arr[i - 1]] + 1) :
INT_MAX);
}
}
}
// Print the minimum length
if (dp[arr.size()][target] == INT_MAX)
{
return -1;
}
else
{
return dp[arr.size()][target];
}
}
// Driver code
int main()
{
vector arr = { 2, 3, 5, 4, 1 };
int target = 11;
int n = arr.size();
cout << minlt(arr, target, n);
}
// This code is contributed by Surendra_Gangwar
Java
// Java program for the above approach
import java.util.*;
class GFG{
// Function to find the smallest subarray
// with sum greater than or equal target
static int minlt(int[] arr, int target, int n)
{
// DP table to store the
// computed subproblems
int[][] dp = new int[arr.length + 1][target + 1];
for(int[] row : dp)
Arrays.fill(row, -1);
for(int i = 0; i < arr.length + 1; i++)
// Initialize first
// column with 0
dp[i][0] = 0;
for(int j = 0; j < target + 1; j++)
// Initialize first
// row with 0
dp[0][j] = Integer.MAX_VALUE;
for(int i = 1; i <= arr.length; i++)
{
for(int j = 1; j <= target; j++)
{
// Check for invalid condition
if (arr[i - 1] > j)
{
dp[i][j] = dp[i - 1][j];
}
else
{
// Fill up the dp table
dp[i][j] = Math.min(dp[i - 1][j],
(dp[i][j - arr[i - 1]]) !=
Integer.MAX_VALUE ?
(dp[i][j - arr[i - 1]] + 1) :
Integer.MAX_VALUE);
}
}
}
// Print the minimum length
if (dp[arr.length][target] == Integer.MAX_VALUE)
{
return -1;
}
else
{
return dp[arr.length][target];
}
}
// Driver code
public static void main (String[] args)
{
int[] arr = { 2, 3, 5, 4, 1 };
int target = 11;
int n = arr.length;
System.out.print(minlt(arr, target, n));
}
}
// This code is contributed by offbeat
Python3
# Python3 program for the above approach
import sys
# Function to find the smallest subarray
# with sum greater than or equal target
def minlt(arr, target, n):
# DP table to store the
# computed subproblems
dp = [[-1 for _ in range(target + 1)]\
for _ in range(len(arr)+1)]
for i in range(len(arr)+1):
# Initialize first
# column with 0
dp[i][0] = 0
for j in range(target + 1):
# Initialize first
# row with 0
dp[0][j] = sys.maxsize
for i in range(1, len(arr)+1):
for j in range(1, target + 1):
# Check for invalid condition
if arr[i-1] > j:
dp[i][j] = dp[i-1][j]
else:
# Fill up the dp table
dp[i][j] = min(dp[i-1][j], \
1 + dp[i][j-arr[i-1]])
return dp[-1][-1]
# Print the minimum length
if dp[-1][-1] == sys.maxsize:
return(-1)
else:
return dp[-1][-1]
# Driver Code
arr = [2, 3, 5, 4, 1]
target = 11
n = len(arr)
print(minlt(arr, target, n))
C#
// C# program for the
// above approach
using System;
class GFG{
// Function to find the
// smallest subarray with
// sum greater than or equal
// target
static int minlt(int[] arr,
int target,
int n)
{
// DP table to store the
// computed subproblems
int[,] dp = new int[arr.Length + 1,
target + 1];
for(int i = 0;
i < arr.Length + 1; i++)
{
for (int j = 0;
j < target + 1; j++)
{
dp[i, j] = -1;
}
}
for(int i = 0;
i < arr.Length + 1; i++)
// Initialize first
// column with 0
dp[i, 0] = 0;
for(int j = 0;
j < target + 1; j++)
// Initialize first
// row with 0
dp[0, j] = int.MaxValue;
for(int i = 1;
i <= arr.Length; i++)
{
for(int j = 1;
j <= target; j++)
{
// Check for invalid
// condition
if (arr[i - 1] > j)
{
dp[i, j] = dp[i - 1, j];
}
else
{
// Fill up the dp table
dp[i, j] = Math.Min(dp[i - 1, j],
(dp[i, j -
arr[i - 1]]) !=
int.MaxValue ?
(dp[i, j -
arr[i - 1]] + 1) :
int.MaxValue);
}
}
}
// Print the minimum
// length
if (dp[arr.Length,
target] == int.MaxValue)
{
return -1;
}
else
{
return dp[arr.Length,
target];
}
}
// Driver code
public static void Main(String[] args)
{
int[] arr = {2, 3, 5, 4, 1};
int target = 11;
int n = arr.Length;
Console.Write(
minlt(arr, target, n));
}
}
// This code is contributed by gauravrajput1
Javascript
输出
3
时间复杂度: O(2 N )
辅助空间: O(N)
高效的方法:可以使用动态规划通过记住子问题以避免重新计算来优化上述方法。
下面是上述方法的实现:
C++
// C++ program for the above approach
#include
using namespace std;
// Function to find the smallest subarray
// with sum greater than or equal target
int minlt(vector arr, int target, int n)
{
// DP table to store the
// computed subproblems
vector> dp(arr.size() + 1 ,
vector (target + 1, -1));
for(int i = 0; i < arr.size() + 1; i++)
// Initialize first
// column with 0
dp[i][0] = 0;
for(int j = 0; j < target + 1; j++)
// Initialize first
// row with 0
dp[0][j] = INT_MAX;
for(int i = 1; i <= arr.size(); i++)
{
for(int j = 1; j <= target; j++)
{
// Check for invalid condition
if (arr[i - 1] > j)
{
dp[i][j] = dp[i - 1][j];
}
else
{
// Fill up the dp table
dp[i][j] = min(dp[i - 1][j],
(dp[i][j - arr[i - 1]]) !=
INT_MAX ?
(dp[i][j - arr[i - 1]] + 1) :
INT_MAX);
}
}
}
// Print the minimum length
if (dp[arr.size()][target] == INT_MAX)
{
return -1;
}
else
{
return dp[arr.size()][target];
}
}
// Driver code
int main()
{
vector arr = { 2, 3, 5, 4, 1 };
int target = 11;
int n = arr.size();
cout << minlt(arr, target, n);
}
// This code is contributed by Surendra_Gangwar
Java
// Java program for the above approach
import java.util.*;
class GFG{
// Function to find the smallest subarray
// with sum greater than or equal target
static int minlt(int[] arr, int target, int n)
{
// DP table to store the
// computed subproblems
int[][] dp = new int[arr.length + 1][target + 1];
for(int[] row : dp)
Arrays.fill(row, -1);
for(int i = 0; i < arr.length + 1; i++)
// Initialize first
// column with 0
dp[i][0] = 0;
for(int j = 0; j < target + 1; j++)
// Initialize first
// row with 0
dp[0][j] = Integer.MAX_VALUE;
for(int i = 1; i <= arr.length; i++)
{
for(int j = 1; j <= target; j++)
{
// Check for invalid condition
if (arr[i - 1] > j)
{
dp[i][j] = dp[i - 1][j];
}
else
{
// Fill up the dp table
dp[i][j] = Math.min(dp[i - 1][j],
(dp[i][j - arr[i - 1]]) !=
Integer.MAX_VALUE ?
(dp[i][j - arr[i - 1]] + 1) :
Integer.MAX_VALUE);
}
}
}
// Print the minimum length
if (dp[arr.length][target] == Integer.MAX_VALUE)
{
return -1;
}
else
{
return dp[arr.length][target];
}
}
// Driver code
public static void main (String[] args)
{
int[] arr = { 2, 3, 5, 4, 1 };
int target = 11;
int n = arr.length;
System.out.print(minlt(arr, target, n));
}
}
// This code is contributed by offbeat
蟒蛇3
# Python3 program for the above approach
import sys
# Function to find the smallest subarray
# with sum greater than or equal target
def minlt(arr, target, n):
# DP table to store the
# computed subproblems
dp = [[-1 for _ in range(target + 1)]\
for _ in range(len(arr)+1)]
for i in range(len(arr)+1):
# Initialize first
# column with 0
dp[i][0] = 0
for j in range(target + 1):
# Initialize first
# row with 0
dp[0][j] = sys.maxsize
for i in range(1, len(arr)+1):
for j in range(1, target + 1):
# Check for invalid condition
if arr[i-1] > j:
dp[i][j] = dp[i-1][j]
else:
# Fill up the dp table
dp[i][j] = min(dp[i-1][j], \
1 + dp[i][j-arr[i-1]])
return dp[-1][-1]
# Print the minimum length
if dp[-1][-1] == sys.maxsize:
return(-1)
else:
return dp[-1][-1]
# Driver Code
arr = [2, 3, 5, 4, 1]
target = 11
n = len(arr)
print(minlt(arr, target, n))
C#
// C# program for the
// above approach
using System;
class GFG{
// Function to find the
// smallest subarray with
// sum greater than or equal
// target
static int minlt(int[] arr,
int target,
int n)
{
// DP table to store the
// computed subproblems
int[,] dp = new int[arr.Length + 1,
target + 1];
for(int i = 0;
i < arr.Length + 1; i++)
{
for (int j = 0;
j < target + 1; j++)
{
dp[i, j] = -1;
}
}
for(int i = 0;
i < arr.Length + 1; i++)
// Initialize first
// column with 0
dp[i, 0] = 0;
for(int j = 0;
j < target + 1; j++)
// Initialize first
// row with 0
dp[0, j] = int.MaxValue;
for(int i = 1;
i <= arr.Length; i++)
{
for(int j = 1;
j <= target; j++)
{
// Check for invalid
// condition
if (arr[i - 1] > j)
{
dp[i, j] = dp[i - 1, j];
}
else
{
// Fill up the dp table
dp[i, j] = Math.Min(dp[i - 1, j],
(dp[i, j -
arr[i - 1]]) !=
int.MaxValue ?
(dp[i, j -
arr[i - 1]] + 1) :
int.MaxValue);
}
}
}
// Print the minimum
// length
if (dp[arr.Length,
target] == int.MaxValue)
{
return -1;
}
else
{
return dp[arr.Length,
target];
}
}
// Driver code
public static void Main(String[] args)
{
int[] arr = {2, 3, 5, 4, 1};
int target = 11;
int n = arr.Length;
Console.Write(
minlt(arr, target, n));
}
}
// This code is contributed by gauravrajput1
Javascript
输出
3
时间复杂度: O(N 2 )
辅助空间: O(N)
如果您想与行业专家一起参加直播课程,请参阅Geeks Classes Live