Min-Heap 是一个完整的二叉树,其中每个内部节点中的值小于或等于该节点的子节点中的值。
将堆的元素映射到数组是微不足道的:如果节点存储在索引 k 处,则其左子节点存储在索引2k + 1 处,其右子节点存储在索引2k + 2 处。
最小堆示例:
5 13
/ \ / \
10 15 16 31
/ / \ / \
30 41 51 100 41
最小堆是如何表示的?
最小堆是一棵完全二叉树。最小堆通常表示为一个数组。根元素将在Arr[0] 处。对于任何第 i 个节点,即Arr[i] :
- Arr[(i -1) / 2]返回其父节点。
- Arr[(2 * i) + 1]返回其左子节点。
- Arr[(2 * i) + 2]返回其右子节点。
最小堆上的操作:
- getMin() :它返回最小堆的根元素。此操作的时间复杂度为O(1) 。
- extractMin() :从 MinHeap 中移除最小元素。此操作的时间复杂度为O(Log n),因为此操作需要在移除 root 后维护堆属性(通过调用 heapify())。
- insert() :插入新键需要O(Log n)时间。我们在树的末尾添加一个新键。如果新键大于它的父键,那么我们不需要做任何事情。否则,我们需要向上遍历以修复违反的堆属性。
下面是最小堆在Python——
Python3
# Python3 implementation of Min Heap
import sys
class MinHeap:
def __init__(self, maxsize):
self.maxsize = maxsize
self.size = 0
self.Heap = [0]*(self.maxsize + 1)
self.Heap[0] = -1 * sys.maxsize
self.FRONT = 1
# Function to return the position of
# parent for the node currently
# at pos
def parent(self, pos):
return pos//2
# Function to return the position of
# the left child for the node currently
# at pos
def leftChild(self, pos):
return 2 * pos
# Function to return the position of
# the right child for the node currently
# at pos
def rightChild(self, pos):
return (2 * pos) + 1
# Function that returns true if the passed
# node is a leaf node
def isLeaf(self, pos):
if pos >= (self.size//2) and pos <= self.size:
return True
return False
# Function to swap two nodes of the heap
def swap(self, fpos, spos):
self.Heap[fpos], self.Heap[spos] = self.Heap[spos], self.Heap[fpos]
# Function to heapify the node at pos
def minHeapify(self, pos):
# If the node is a non-leaf node and greater
# than any of its child
if not self.isLeaf(pos):
if (self.Heap[pos] > self.Heap[self.leftChild(pos)] or
self.Heap[pos] > self.Heap[self.rightChild(pos)]):
# Swap with the left child and heapify
# the left child
if self.Heap[self.leftChild(pos)] < self.Heap[self.rightChild(pos)]:
self.swap(pos, self.leftChild(pos))
self.minHeapify(self.leftChild(pos))
# Swap with the right child and heapify
# the right child
else:
self.swap(pos, self.rightChild(pos))
self.minHeapify(self.rightChild(pos))
# Function to insert a node into the heap
def insert(self, element):
if self.size >= self.maxsize :
return
self.size+= 1
self.Heap[self.size] = element
current = self.size
while self.Heap[current] < self.Heap[self.parent(current)]:
self.swap(current, self.parent(current))
current = self.parent(current)
# Function to print the contents of the heap
def Print(self):
for i in range(1, (self.size//2)+1):
print(" PARENT : "+ str(self.Heap[i])+" LEFT CHILD : "+
str(self.Heap[2 * i])+" RIGHT CHILD : "+
str(self.Heap[2 * i + 1]))
# Function to build the min heap using
# the minHeapify function
def minHeap(self):
for pos in range(self.size//2, 0, -1):
self.minHeapify(pos)
# Function to remove and return the minimum
# element from the heap
def remove(self):
popped = self.Heap[self.FRONT]
self.Heap[self.FRONT] = self.Heap[self.size]
self.size-= 1
self.minHeapify(self.FRONT)
return popped
# Driver Code
if __name__ == "__main__":
print('The minHeap is ')
minHeap = MinHeap(15)
minHeap.insert(5)
minHeap.insert(3)
minHeap.insert(17)
minHeap.insert(10)
minHeap.insert(84)
minHeap.insert(19)
minHeap.insert(6)
minHeap.insert(22)
minHeap.insert(9)
minHeap.minHeap()
minHeap.Print()
print("The Min val is " + str(minHeap.remove()))
Python3
# Python3 program to demonstrate working of heapq
from heapq import heapify, heappush, heappop
# Creating empty heap
heap = []
heapify(heap)
# Adding items to the heap using heappush function
heappush(heap, 10)
heappush(heap, 30)
heappush(heap, 20)
heappush(heap, 400)
# printing the value of minimum element
print("Head value of heap : "+str(heap[0]))
# printing the elements of the heap
print("The heap elements : ")
for i in heap:
print(i, end = ' ')
print("\n")
element = heappop(heap)
# printing the elements of the heap
print("The heap elements : ")
for i in heap:
print(i, end = ' ')
输出 :
The Min Heap is
PARENT : 3 LEFT CHILD : 5 RIGHT CHILD :6
PARENT : 5 LEFT CHILD : 9 RIGHT CHILD :84
PARENT : 6 LEFT CHILD : 19 RIGHT CHILD :17
PARENT : 9 LEFT CHILD : 22 RIGHT CHILD :10
The Min val is 3
使用库函数:
我们使用 heapq 类在Python实现堆。默认情况下,Min Heap 由此类实现。
蟒蛇3
# Python3 program to demonstrate working of heapq
from heapq import heapify, heappush, heappop
# Creating empty heap
heap = []
heapify(heap)
# Adding items to the heap using heappush function
heappush(heap, 10)
heappush(heap, 30)
heappush(heap, 20)
heappush(heap, 400)
# printing the value of minimum element
print("Head value of heap : "+str(heap[0]))
# printing the elements of the heap
print("The heap elements : ")
for i in heap:
print(i, end = ' ')
print("\n")
element = heappop(heap)
# printing the elements of the heap
print("The heap elements : ")
for i in heap:
print(i, end = ' ')
输出 :
Head value of heap : 10
The heap elements :
10 30 20 400
The heap elements :
20 30 400
如果您想与行业专家一起参加直播课程,请参阅Geeks Classes Live