在上一篇文章中,我们介绍了 B-Tree。我们还讨论了 search() 和 traverse() 函数。
在这篇文章中,讨论了 insert() 操作。总是在叶节点处插入一个新键。设要插入的密钥为 k。和 BST 一样,我们从根开始向下遍历,直到到达叶节点。一旦我们到达叶节点,我们就在该叶节点中插入键。与 BST 不同,我们对节点可以包含的键数有一个预定义的范围。所以在向节点插入键之前,我们要确保节点有额外的空间。
在插入密钥之前,如何确保节点具有可用于密钥的空间?我们使用称为 splitChild() 的操作来拆分节点的子节点。请参阅下图以了解拆分。在下图中,x 的子节点 y 被拆分为两个节点 y 和 z。请注意, splitChild 操作将键向上移动,这就是 B-Trees 成长的原因,与 BSTs 向下成长不同。
如上所述,为了插入一个新的键,我们从根到叶。在向下遍历到一个节点之前,我们首先检查该节点是否已满。如果节点已满,我们将其拆分以创建空间。以下是完整的算法。
插入
1)将 x 初始化为 root。
2)当 x 不是叶子时,请执行以下操作
.. a)找到接下来要遍历的 x 的孩子。让孩子成为y。
.. b)如果 y 未满,则将 x 更改为指向 y。
.. c)如果 y 已满,则将其拆分并将 x 更改为指向 y 的两个部分之一。如果 k 小于 y 中的中间键,则将 x 设置为 y 的第一部分。 y 的其他第二部分。当我们拆分 y 时,我们将一个键从 y 移动到其父 x。
3)当 x 是叶子时,步骤 2 中的循环停止。 x 必须有 1 个额外键的空间,因为我们已经提前拆分了所有节点。所以只需将 k 插入到 x 中。
请注意,该算法遵循 Cormen 书。它实际上是一种主动插入算法,在进入节点之前,如果它已满,我们将其拆分。之前分裂的好处是,我们永远不会遍历一个节点两次。如果我们在深入之前不拆分节点并且仅在插入新键(反应性)时才拆分它,我们最终可能会再次从叶到根遍历所有节点。当从根到叶的路径上的所有节点都已满时,就会发生这种情况。所以当我们来到叶节点时,我们将它拆分并向上移动一个键。向上移动一个键会导致父节点分裂(因为父节点已经满了)。在这种主动插入算法中,这种级联效应永远不会发生。但是这种主动插入有一个缺点,我们可能会进行不必要的拆分。
让我们通过一个最小度数为 3 的示例树和一个初始为空的 B 树中的整数序列 10、20、30、40、50、60、70、80 和 90 来理解算法。
最初 root 是 NULL。让我们先插入 10。
现在让我们插入 20、30、40 和 50。它们都将插入到根中,因为节点可以容纳的最大键数是 2*t – 1,即 5。
现在让我们插入 60。由于根节点已满,首先将其拆分为两个,然后将 60 插入到相应的子节点中。
现在让我们插入 70 和 80。这些新的键将被插入到适当的叶子中,没有任何分裂。
现在让我们插入 90。这个插入会导致分裂。中间键将上升到父级。
以下是上述主动算法的 C++ 实现。
// C++ program for B-Tree insertion
#include
using namespace std;
// A BTree node
class BTreeNode
{
int *keys; // An array of keys
int t; // Minimum degree (defines the range for number of keys)
BTreeNode **C; // An array of child pointers
int n; // Current number of keys
bool leaf; // Is true when node is leaf. Otherwise false
public:
BTreeNode(int _t, bool _leaf); // Constructor
// A utility function to insert a new key in the subtree rooted with
// this node. The assumption is, the node must be non-full when this
// function is called
void insertNonFull(int k);
// A utility function to split the child y of this node. i is index of y in
// child array C[]. The Child y must be full when this function is called
void splitChild(int i, BTreeNode *y);
// A function to traverse all nodes in a subtree rooted with this node
void traverse();
// A function to search a key in the subtree rooted with this node.
BTreeNode *search(int k); // returns NULL if k is not present.
// Make BTree friend of this so that we can access private members of this
// class in BTree functions
friend class BTree;
};
// A BTree
class BTree
{
BTreeNode *root; // Pointer to root node
int t; // Minimum degree
public:
// Constructor (Initializes tree as empty)
BTree(int _t)
{ root = NULL; t = _t; }
// function to traverse the tree
void traverse()
{ if (root != NULL) root->traverse(); }
// function to search a key in this tree
BTreeNode* search(int k)
{ return (root == NULL)? NULL : root->search(k); }
// The main function that inserts a new key in this B-Tree
void insert(int k);
};
// Constructor for BTreeNode class
BTreeNode::BTreeNode(int t1, bool leaf1)
{
// Copy the given minimum degree and leaf property
t = t1;
leaf = leaf1;
// Allocate memory for maximum number of possible keys
// and child pointers
keys = new int[2*t-1];
C = new BTreeNode *[2*t];
// Initialize the number of keys as 0
n = 0;
}
// Function to traverse all nodes in a subtree rooted with this node
void BTreeNode::traverse()
{
// There are n keys and n+1 children, traverse through n keys
// and first n children
int i;
for (i = 0; i < n; i++)
{
// If this is not leaf, then before printing key[i],
// traverse the subtree rooted with child C[i].
if (leaf == false)
C[i]->traverse();
cout << " " << keys[i];
}
// Print the subtree rooted with last child
if (leaf == false)
C[i]->traverse();
}
// Function to search key k in subtree rooted with this node
BTreeNode *BTreeNode::search(int k)
{
// Find the first key greater than or equal to k
int i = 0;
while (i < n && k > keys[i])
i++;
// If the found key is equal to k, return this node
if (keys[i] == k)
return this;
// If key is not found here and this is a leaf node
if (leaf == true)
return NULL;
// Go to the appropriate child
return C[i]->search(k);
}
// The main function that inserts a new key in this B-Tree
void BTree::insert(int k)
{
// If tree is empty
if (root == NULL)
{
// Allocate memory for root
root = new BTreeNode(t, true);
root->keys[0] = k; // Insert key
root->n = 1; // Update number of keys in root
}
else // If tree is not empty
{
// If root is full, then tree grows in height
if (root->n == 2*t-1)
{
// Allocate memory for new root
BTreeNode *s = new BTreeNode(t, false);
// Make old root as child of new root
s->C[0] = root;
// Split the old root and move 1 key to the new root
s->splitChild(0, root);
// New root has two children now. Decide which of the
// two children is going to have new key
int i = 0;
if (s->keys[0] < k)
i++;
s->C[i]->insertNonFull(k);
// Change root
root = s;
}
else // If root is not full, call insertNonFull for root
root->insertNonFull(k);
}
}
// A utility function to insert a new key in this node
// The assumption is, the node must be non-full when this
// function is called
void BTreeNode::insertNonFull(int k)
{
// Initialize index as index of rightmost element
int i = n-1;
// If this is a leaf node
if (leaf == true)
{
// The following loop does two things
// a) Finds the location of new key to be inserted
// b) Moves all greater keys to one place ahead
while (i >= 0 && keys[i] > k)
{
keys[i+1] = keys[i];
i--;
}
// Insert the new key at found location
keys[i+1] = k;
n = n+1;
}
else // If this node is not leaf
{
// Find the child which is going to have the new key
while (i >= 0 && keys[i] > k)
i--;
// See if the found child is full
if (C[i+1]->n == 2*t-1)
{
// If the child is full, then split it
splitChild(i+1, C[i+1]);
// After split, the middle key of C[i] goes up and
// C[i] is splitted into two. See which of the two
// is going to have the new key
if (keys[i+1] < k)
i++;
}
C[i+1]->insertNonFull(k);
}
}
// A utility function to split the child y of this node
// Note that y must be full when this function is called
void BTreeNode::splitChild(int i, BTreeNode *y)
{
// Create a new node which is going to store (t-1) keys
// of y
BTreeNode *z = new BTreeNode(y->t, y->leaf);
z->n = t - 1;
// Copy the last (t-1) keys of y to z
for (int j = 0; j < t-1; j++)
z->keys[j] = y->keys[j+t];
// Copy the last t children of y to z
if (y->leaf == false)
{
for (int j = 0; j < t; j++)
z->C[j] = y->C[j+t];
}
// Reduce the number of keys in y
y->n = t - 1;
// Since this node is going to have a new child,
// create space of new child
for (int j = n; j >= i+1; j--)
C[j+1] = C[j];
// Link the new child to this node
C[i+1] = z;
// A key of y will move to this node. Find the location of
// new key and move all greater keys one space ahead
for (int j = n-1; j >= i; j--)
keys[j+1] = keys[j];
// Copy the middle key of y to this node
keys[i] = y->keys[t-1];
// Increment count of keys in this node
n = n + 1;
}
// Driver program to test above functions
int main()
{
BTree t(3); // A B-Tree with minium degree 3
t.insert(10);
t.insert(20);
t.insert(5);
t.insert(6);
t.insert(12);
t.insert(30);
t.insert(7);
t.insert(17);
cout << "Traversal of the constucted tree is ";
t.traverse();
int k = 6;
(t.search(k) != NULL)? cout << "\nPresent" : cout << "\nNot Present";
k = 15;
(t.search(k) != NULL)? cout << "\nPresent" : cout << "\nNot Present";
return 0;
}
输出:
Traversal of the constucted tree is 5 6 7 10 12 17 20 30
Present
Not Present
参考:
算法导论第 3 版 作者:Clifford Stein、Thomas H. Cormen、Charles E. Leiserson、Ronald L. Rivest
http://www.cs.utexas.edu/users/djimenez/utsa/cs3343/lecture17.html
如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程和学生竞争性编程现场课程。