📜  数据科学与数据可视化的区别

📅  最后修改于: 2021-09-11 04:35:56             🧑  作者: Mango

数据科学:数据科学是对数据的研究。它涉及开发记录、存储和分析数据以提取有用信息的方法。数据科学的目标是从任何类型的结构化和非结构化数据中获取知识。数据科学是一组专注于挖掘大数据集和发现趋势、方法、新见解和流程的领域的术语。它适用于任何大小的数据。数据科学的一些应用是电子商务、制造、银行、医疗保健、运输、金融等。 数据科学是“数据分析、机器学习和统一统计的概念”,以便用数据理解实际现象.

数据可视化:数据可视化是以图形或图形格式(例如:图表、图形和地图)的信息和数据的图形表示。数据可视化工具提供了一种查看和理解趋势、数据模式和异常值的可访问方式。数据可视化工具和技术对于分析大量信息和做出数据驱动的决策至关重要。使用图片来理解数据的概念已经使用了几个世纪。数据可视化的一般类型是图表、表格、图形、地图、仪表板。

数据科学与数据可视化

下表列出了数据科学和数据可视化之间的差异:

Based on Data Science Data Visualization
Definition Data science is study of data. It involves developing methods of recording, storing, and analyzing data to extract useful information. Data visualization is the graphical representation of information and data in a pictorial or graphical format(Example: charts, graphs, and maps).
Process Data cleansing, Modeling, Measurement, Data harvest, Data mining, Data munging. Represent it in any chart form or graphs.
Concept Insights about the data.
Explanation of the data.
Predictions.
Representation of the data.
Application Predictions.
Predictions like next I-Phone release model or next World cup Winners.
Organization metrics, Key performance indicators
Tools Python, R, Matlab Tableau, SAS, Power BI, d3 js
Who does this? Data scientists, Mathematicians, Data analysts Data scientists, UI/UX
Significance Many organizations are depending on data science for decision making. It helps data scientists in understanding the source and how to solve the problem
Skills Statistics, algorithms Data analysis, and plotting techniques.