熊猫:它 是一个用Python语言编写的开源、BSD 许可的库。 Pandas提供高性能、快速、易于使用的数据结构和数据分析工具,用于处理数值数据和时间序列。 Pandas建立在numpy库之上,并使用Python 、 Cython和C等语言编写。在 Pandas 中,我们可以从各种文件格式导入数据,如JSON、SQL、Microsoft Excel等。
例子:
Python3
# Importing pandas library
import pandas as pd
# Creating and initializing a nested list
age = [['Aman', 95.5, "Male"], ['Sunny', 65.7, "Female"],
['Monty', 85.1, "Male"], ['toni', 75.4, "Male"]]
# Creating a pandas dataframe
df = pd.DataFrame(age, columns=['Name', 'Marks', 'Gender'])
# Printing dataframe
df
Python3
# Importing Numpy package
import numpy as np
# Creating a 3-D numpy array using np.array()
org_array = np.array([[23, 46, 85],
[43, 56, 99],
[11, 34, 55]])
# Printing the Numpy array
print(org_array)
输出:
麻木:它 是Python的基础库,用于执行科学计算。它提供了高性能的多维数组和处理它们的工具。 A N umpy阵列是由正整数的元组索引(同一类型)值的网格,numpy的阵列的速度快,容易理解,并为用户提供到跨阵列执行计算的权利。
例子:
蟒蛇3
# Importing Numpy package
import numpy as np
# Creating a 3-D numpy array using np.array()
org_array = np.array([[23, 46, 85],
[43, 56, 99],
[11, 34, 55]])
# Printing the Numpy array
print(org_array)
输出:
[[23 46 85]
[43 56 99]
[11 34 55]]
Pandas VS NumPy 差异表
PANDAS |
NUMPY |
|
---|---|---|
1 | When we have to work on Tabular data, we prefer the pandas module. | When we have to work on Numerical data, we prefer the numpy module. |
2 | The powerful tools of pandas are Data frame and Series. | Whereas the powerful tool of numpy is Arrays. |
3 | Pandas consume more memory. | Numpy is memory efficient. |
4 | Pandas has a better performance when number of rows is 500K or more. | Numpy has a better performance when number of rows is 50K or less. |
5 | Indexing of the pandas series is very slow as compared to numpy arrays. | Indexing of numpy Arrays is very fast. |
6 | Pandas offers 2d table object called DataFrame. | Numpy is capable of providing multi-dimensional arrays. |