📜  数据科学和商业智能之间的区别

📅  最后修改于: 2021-09-12 11:19:23             🧑  作者: Mango

数据科学:
数据科学基本上是一个通过使用各种科学方法、算法和过程从数据中提取信息和知识的领域。因此,它可以被定义为各种数学工具、算法、统计和机器学习技术的组合,从而用于从数据中找到有助于决策过程的隐藏模式和见解。数据科学处理结构化和非结构化数据。它与数据挖掘和大数据都有关。数据科学涉及研究历史趋势,从而利用其结论重新定义当前趋势并预测未来趋势。

商业智能:
商业智能(BI)基本上是企业用于业务数据分析的一组技术、应用程序和流程。它基本上用于将原始数据转换为有意义的信息,从而用于业务决策和盈利行动。它处理结构化和有时非结构化数据的分析,为新的和有利可图的商业机会铺平道路。它支持基于事实的决策而不是基于假设的决策。因此,它对企业的业务决策具有直接影响。商业智能工具可提高企业进入新市场的机会,并有助于研究营销活动的影响。

数据科学与商业智能

下表列出了数据科学和商业智能之间的差异:

Factor Data Science Business Intelligence
Concept It is a field that uses mathematics, statistics and various other tools to discover the hidden patterns in the data. It is basically a set of technologies, applications and processes that are used by the enterprises for business data analysis.
Focus It focuses on the future. It focuses the past and present.
Data It deals with both structured as well as unstructured data. It mainly deals only with structured data.
Flexibility Data science is much more flexible as data sources can be added as per requirement. It is less flexible as in case of business intelligence data sources need to be pre-planned.
Method It makes the use of scientific method. It makes the use of analytic method.
Complexity It has a higher complexity in comparison to business intelligence. It is much simpler when compared to data science.
Expertise It’s expertise is data scientist. It’s expertise is business user.
Questions It deals with the questions what will happen and what if. It deals with the question what happened.
Tools It’s tools are SAS, BigML, MATLAB, Excel etc. It’s tools are InsightSquared Sales Analytics, Klipfolio, ThoughtSpot, Cyfe, TIBCO Spotfire etc.