📜  商业智能和数据仓库之间的区别

📅  最后修改于: 2021-09-16 10:18:27             🧑  作者: Mango

商业智能:大型商业组织通常会从各种来源接收大量数据。这些数据始终可用于获取有助于做出更好业务决策的各种信息集。这些可操作的见解可能是描述性的、预测性的或规定性的。 BI 代表用于收集、集成、分析和可视化业务信息的各种方法和工具。它可以被视为数据分析的同义词,尤其是在商业世界中。

数据仓库:数据仓库是后端的一个系统和一组技术,有助于从各种来源收集大量不同的数据并存储以备后用。好的数据仓库具有商业意义,促进未来的提取和分析。商业智能是利用数据仓库的应用程序之一。数据仓库通常遵循多维范式(与 OLAP 相关),其中数据保存在事实表(涵盖收入或成本等数字的表)和维度(我们希望查看事实的内容,例如地区、办公室或周) .

商业智能与数据仓库

下表列出了商业智能和数据仓库之间的差异:

S.No. Business Intelligence Data Warehouse
1. It is a set of tools and methods to analyze data and discover, extract and formulate actionable information that would be useful for business decisions It is a system for storage of data from various sources in an orderly manner as to facilitate business-minded reads and writes
2. It is a Decision Support System (DSS) It is a data storage system
3. Serves at the front end Serves at the back end
4. Collects data from the data warehouse for analysis Collects data from various disparate sources and organises it for efficient BI analysis
5. Comprises of business reports, charts, graphs, etc. Comprises of data held in “fact tables” and “dimensions” with business meaning incorporated into them
6. BI as such doesn’t have much use without a data warehouse as large amounts of various and useful data is required for analysis BI is one of many use-cases for data warehouses, there are more applications for this system
7. Handled by executives and analysts relatively higher up in the hierarchy Handled and maintained by data engineers and system administrators who report to/work for the executives and analysts
8. Examples of BI software: SAP, Sisense, Datapine, Looker, etc. Examples of Data warehouse software: BigQuery, Snowflake, Amazon, Redshift, Panoply, etc.