📜  归并排序

📅  最后修改于: 2021-09-16 11:15:32             🧑  作者: Mango

与 QuickSort 一样,Merge Sort 是一种分而治之的算法。它将输入数组分成两半,为两半调用自己,然后合并已排序的两半。 merge()函数用于合并两半。 merge(arr, l, m, r) 是一个关键过程,它假设 arr[l..m] 和 arr[m+1..r] 已排序并将两个排序的子数组合并为一个。有关详细信息,请参阅以下 C 实现。

MergeSort(arr[], l,  r)
If r > l
     1. Find the middle point to divide the array into two halves:  
             middle m = l+ (r-l)/2
     2. Call mergeSort for first half:   
             Call mergeSort(arr, l, m)
     3. Call mergeSort for second half:
             Call mergeSort(arr, m+1, r)
     4. Merge the two halves sorted in step 2 and 3:
             Call merge(arr, l, m, r)

来自维基百科的下图显示了示例数组 {38, 27, 43, 3, 9, 82, 10} 的完整合并排序过程。如果我们仔细看图,我们可以看到数组被递归地分成两半,直到大小变为 1。一旦大小变为 1,合并过程开始起作用并开始合并数组,直到完整的数组合并。

归并排序教程

C++
// C++ program for Merge Sort
#include 
using namespace std;
 
// Merges two subarrays of array[].
// First subarray is arr[begin..mid]
// Second subarray is arr[mid+1..end]
void merge(int array[], int const left, int const mid, int const right)
{
    auto const subArrayOne = mid - left + 1;
    auto const subArrayTwo = right - mid;
 
    // Create temp arrays
    auto *leftArray = new int[subArrayOne],
         *rightArray = new int[subArrayTwo];
 
    // Copy data to temp arrays leftArray[] and rightArray[]
    for (auto i = 0; i < subArrayOne; i++)
        leftArray[i] = array[left + i];
    for (auto j = 0; j < subArrayTwo; j++)
        rightArray[j] = array[mid + 1 + j];
 
    auto indexOfSubArrayOne = 0, // Initial index of first sub-array
        indexOfSubArrayTwo = 0; // Initial index of second sub-array
    int indexOfMergedArray = left; // Initial index of merged array
 
    // Merge the temp arrays back into array[left..right]
    while (indexOfSubArrayOne < subArrayOne && indexOfSubArrayTwo < subArrayTwo) {
        if (leftArray[indexOfSubArrayOne] <= rightArray[indexOfSubArrayTwo]) {
            array[indexOfMergedArray] = leftArray[indexOfSubArrayOne];
            indexOfSubArrayOne++;
        }
        else {
            array[indexOfMergedArray] = rightArray[indexOfSubArrayTwo];
            indexOfSubArrayTwo++;
        }
        indexOfMergedArray++;
    }
    // Copy the remaining elements of
    // left[], if there are any
    while (indexOfSubArrayOne < subArrayOne) {
        array[indexOfMergedArray] = leftArray[indexOfSubArrayOne];
        indexOfSubArrayOne++;
        indexOfMergedArray++;
    }
    // Copy the remaining elements of
    // right[], if there are any
    while (indexOfSubArrayTwo < subArrayTwo) {
        array[indexOfMergedArray] = rightArray[indexOfSubArrayTwo];
        indexOfSubArrayTwo++;
        indexOfMergedArray++;
    }
}
 
// begin is for left index and end is
// right index of the sub-array
// of arr to be sorted */
void mergeSort(int array[], int const begin, int const end)
{
    if (begin >= end)
        return; // Returns recursivly
 
    auto mid = begin + (end - begin) / 2;
    mergeSort(array, begin, mid);
    mergeSort(array, mid + 1, end);
    merge(array, begin, mid, end);
}
 
// UTILITY FUNCTIONS
// Function to print an array
void printArray(int A[], int size)
{
    for (auto i = 0; i < size; i++)
        cout << A[i] << " ";
}
 
// Driver code
int main()
{
    int arr[] = { 12, 11, 13, 5, 6, 7 };
    auto arr_size = sizeof(arr) / sizeof(arr[0]);
 
    cout << "Given array is \n";
    printArray(arr, arr_size);
 
    mergeSort(arr, 0, arr_size - 1);
 
    cout << "\nSorted array is \n";
    printArray(arr, arr_size);
    return 0;
}
 
// This code is contributed by Mayank Tyagi
// This code was revised by Joshua Estes


C
/* C program for Merge Sort */
#include 
#include 
 
// Merges two subarrays of arr[].
// First subarray is arr[l..m]
// Second subarray is arr[m+1..r]
void merge(int arr[], int l, int m, int r)
{
    int i, j, k;
    int n1 = m - l + 1;
    int n2 = r - m;
 
    /* create temp arrays */
    int L[n1], R[n2];
 
    /* Copy data to temp arrays L[] and R[] */
    for (i = 0; i < n1; i++)
        L[i] = arr[l + i];
    for (j = 0; j < n2; j++)
        R[j] = arr[m + 1 + j];
 
    /* Merge the temp arrays back into arr[l..r]*/
    i = 0; // Initial index of first subarray
    j = 0; // Initial index of second subarray
    k = l; // Initial index of merged subarray
    while (i < n1 && j < n2) {
        if (L[i] <= R[j]) {
            arr[k] = L[i];
            i++;
        }
        else {
            arr[k] = R[j];
            j++;
        }
        k++;
    }
 
    /* Copy the remaining elements of L[], if there
    are any */
    while (i < n1) {
        arr[k] = L[i];
        i++;
        k++;
    }
 
    /* Copy the remaining elements of R[], if there
    are any */
    while (j < n2) {
        arr[k] = R[j];
        j++;
        k++;
    }
}
 
/* l is for left index and r is right index of the
sub-array of arr to be sorted */
void mergeSort(int arr[], int l, int r)
{
    if (l < r) {
        // Same as (l+r)/2, but avoids overflow for
        // large l and h
        int m = l + (r - l) / 2;
 
        // Sort first and second halves
        mergeSort(arr, l, m);
        mergeSort(arr, m + 1, r);
 
        merge(arr, l, m, r);
    }
}
 
/* UTILITY FUNCTIONS */
/* Function to print an array */
void printArray(int A[], int size)
{
    int i;
    for (i = 0; i < size; i++)
        printf("%d ", A[i]);
    printf("\n");
}
 
/* Driver code */
int main()
{
    int arr[] = { 12, 11, 13, 5, 6, 7 };
    int arr_size = sizeof(arr) / sizeof(arr[0]);
 
    printf("Given array is \n");
    printArray(arr, arr_size);
 
    mergeSort(arr, 0, arr_size - 1);
 
    printf("\nSorted array is \n");
    printArray(arr, arr_size);
    return 0;
}


Java
/* Java program for Merge Sort */
class MergeSort
{
    // Merges two subarrays of arr[].
    // First subarray is arr[l..m]
    // Second subarray is arr[m+1..r]
    void merge(int arr[], int l, int m, int r)
    {
        // Find sizes of two subarrays to be merged
        int n1 = m - l + 1;
        int n2 = r - m;
 
        /* Create temp arrays */
        int L[] = new int[n1];
        int R[] = new int[n2];
 
        /*Copy data to temp arrays*/
        for (int i = 0; i < n1; ++i)
            L[i] = arr[l + i];
        for (int j = 0; j < n2; ++j)
            R[j] = arr[m + 1 + j];
 
        /* Merge the temp arrays */
 
        // Initial indexes of first and second subarrays
        int i = 0, j = 0;
 
        // Initial index of merged subarry array
        int k = l;
        while (i < n1 && j < n2) {
            if (L[i] <= R[j]) {
                arr[k] = L[i];
                i++;
            }
            else {
                arr[k] = R[j];
                j++;
            }
            k++;
        }
 
        /* Copy remaining elements of L[] if any */
        while (i < n1) {
            arr[k] = L[i];
            i++;
            k++;
        }
 
        /* Copy remaining elements of R[] if any */
        while (j < n2) {
            arr[k] = R[j];
            j++;
            k++;
        }
    }
 
    // Main function that sorts arr[l..r] using
    // merge()
    void sort(int arr[], int l, int r)
    {
        if (l < r) {
            // Find the middle point
            int m =l+ (r-l)/2;
 
            // Sort first and second halves
            sort(arr, l, m);
            sort(arr, m + 1, r);
 
            // Merge the sorted halves
            merge(arr, l, m, r);
        }
    }
 
    /* A utility function to print array of size n */
    static void printArray(int arr[])
    {
        int n = arr.length;
        for (int i = 0; i < n; ++i)
            System.out.print(arr[i] + " ");
        System.out.println();
    }
 
    // Driver code
    public static void main(String args[])
    {
        int arr[] = { 12, 11, 13, 5, 6, 7 };
 
        System.out.println("Given Array");
        printArray(arr);
 
        MergeSort ob = new MergeSort();
        ob.sort(arr, 0, arr.length - 1);
 
        System.out.println("\nSorted array");
        printArray(arr);
    }
}
/* This code is contributed by Rajat Mishra */


Python3
# Python program for implementation of MergeSort
def mergeSort(arr):
    if len(arr) > 1:
 
         # Finding the mid of the array
        mid = len(arr)//2
 
        # Dividing the array elements
        L = arr[:mid]
 
        # into 2 halves
        R = arr[mid:]
 
        # Sorting the first half
        mergeSort(L)
 
        # Sorting the second half
        mergeSort(R)
 
        i = j = k = 0
 
        # Copy data to temp arrays L[] and R[]
        while i < len(L) and j < len(R):
            if L[i] < R[j]:
                arr[k] = L[i]
                i += 1
            else:
                arr[k] = R[j]
                j += 1
            k += 1
 
        # Checking if any element was left
        while i < len(L):
            arr[k] = L[i]
            i += 1
            k += 1
 
        while j < len(R):
            arr[k] = R[j]
            j += 1
            k += 1
 
# Code to print the list
 
 
def printList(arr):
    for i in range(len(arr)):
        print(arr[i], end=" ")
    print()
 
 
# Driver Code
if __name__ == '__main__':
    arr = [12, 11, 13, 5, 6, 7]
    print("Given array is", end="\n")
    printList(arr)
    mergeSort(arr)
    print("Sorted array is: ", end="\n")
    printList(arr)
 
# This code is contributed by Mayank Khanna


C#
// C# program for Merge Sort
using System;
class MergeSort {
 
    // Merges two subarrays of []arr.
    // First subarray is arr[l..m]
    // Second subarray is arr[m+1..r]
    void merge(int[] arr, int l, int m, int r)
    {
        // Find sizes of two
        // subarrays to be merged
        int n1 = m - l + 1;
        int n2 = r - m;
 
        // Create temp arrays
        int[] L = new int[n1];
        int[] R = new int[n2];
        int i, j;
 
        // Copy data to temp arrays
        for (i = 0; i < n1; ++i)
            L[i] = arr[l + i];
        for (j = 0; j < n2; ++j)
            R[j] = arr[m + 1 + j];
 
        // Merge the temp arrays
 
        // Initial indexes of first
        // and second subarrays
        i = 0;
        j = 0;
 
        // Initial index of merged
        // subarry array
        int k = l;
        while (i < n1 && j < n2) {
            if (L[i] <= R[j]) {
                arr[k] = L[i];
                i++;
            }
            else {
                arr[k] = R[j];
                j++;
            }
            k++;
        }
 
        // Copy remaining elements
        // of L[] if any
        while (i < n1) {
            arr[k] = L[i];
            i++;
            k++;
        }
 
        // Copy remaining elements
        // of R[] if any
        while (j < n2) {
            arr[k] = R[j];
            j++;
            k++;
        }
    }
 
    // Main function that
    // sorts arr[l..r] using
    // merge()
    void sort(int[] arr, int l, int r)
    {
        if (l < r) {
            // Find the middle
            // point
            int m = l+ (r-l)/2;
 
            // Sort first and
            // second halves
            sort(arr, l, m);
            sort(arr, m + 1, r);
 
            // Merge the sorted halves
            merge(arr, l, m, r);
        }
    }
 
    // A utility function to
    // print array of size n */
    static void printArray(int[] arr)
    {
        int n = arr.Length;
        for (int i = 0; i < n; ++i)
            Console.Write(arr[i] + " ");
        Console.WriteLine();
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int[] arr = { 12, 11, 13, 5, 6, 7 };
        Console.WriteLine("Given Array");
        printArray(arr);
        MergeSort ob = new MergeSort();
        ob.sort(arr, 0, arr.Length - 1);
        Console.WriteLine("\nSorted array");
        printArray(arr);
    }
}
 
// This code is contributed by Princi Singh


Javascript


输出

Given array is 
12 11 13 5 6 7 
Sorted array is 
5 6 7 11 12 13

时间复杂度:在不同机器上对数组进行排序。归并排序是一种递归算法,时间复杂度可以表示为以下递归关系。
T(n) = 2T(n/2) + θ(n)

上述递归可以使用递归树方法或主方法来解决。它属于 Master Method 的 case II,递归的解是 θ(nLogn)。归并排序的时间复杂度在所有 3 种情况下(最差、平均和最好)都是 θ(nLogn),因为归并排序总是将数组分成两半,并且需要线性时间来合并两半。
辅助空间: O(n)
算法范式:分而治之
就地排序:在典型实现中没有
稳定:

归并排序的应用

  1. 合并排序对于在 O(nLogn) 时间内对链表进行排序很有用。在链表的情况下,情况不同主要是由于数组和链表的内存分配不同。与数组不同,链表节点在内存中可能不相邻。与数组不同,在链表中,我们可以在 O(1) 额外空间和 O(1) 时间内在中间插入项目。因此,归并排序的归并操作可以在不给链表额外空间的情况下实现。
    在数组中,我们可以进行随机访问,因为元素在内存中是连续的。假设我们有一个整数(4 字节)数组 A,让 A[0] 的地址为 x,然后访问 A[i],我们可以直接访问 (x + i*4) 处的内存。与数组不同,我们不能在链表中进行随机访问。快速排序需要大量此类访问。在访问第 i 个索引的链表中,由于没有连续的内存块,我们必须从头到第 i 个节点遍历每个节点。因此,快速排序的开销会增加。归并排序顺序访问数据,随机访问的需求低。
  2. 倒数问题
  3. 用于外部排序

归并排序的缺点

  • 与用于较小任务的其他排序算法相比,速度较慢。
  • 归并排序算法需要额外的 0(n) 内存空间用于临时数组。
  • 即使数组已排序,它也会经历整个过程。

合并排序 1合并排序 2合并排序 3合并排序 4合并排序 5合并排序 6

  • 归并排序的最新文章
  • 排序的编码实践。
  • 归并排序测验

如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程学生竞争性编程现场课程