📜  具有 K 次反转的排列数

📅  最后修改于: 2021-09-17 07:05:21             🧑  作者: Mango

给定一个数组,反转被定义为一对 a[i], a[j] 使得 a[i] > a[j] 和 i < j。给定两个数 N 和 k,我们需要知道第一个 N 数有多少个排列正好有 K 反转。

例子:

Input  : N = 3, K = 1
Output : 2
Explanation :  
Total Permutation of first N number,
123, 132, 213, 231, 312, 321
Permutation with 1 inversion : 132 and 213

Input  : N = 4, K = 2
Output : 5

解决这个问题的一个天真的方法是记下所有排列,然后检查它们中的反转计数,但遍历排列本身将花费 O(N!) 时间,这太长了。

我们可以使用动态规划方法解决这个问题。下面是递归公式。

If N is 0, Count(0, K) = 0

If K is 0, Count(N, 0) = 1 (Only sorted array)

In general case, 
If we have N number and require K inversion, 
Count(N, K) = Count(N - 1, K) + 
              Count(N – 1, K - 1) + 
              Count(N – 1, K – 2) + 
              .... + 
              Count(N – 1, 0)

上面的递归公式是如何工作的?
如果我们有 N 个数,想要有 K 个排列,假设 (N – 1) 个数的所有排列都写在某处,那么新数(第 N 个和最大的数)需要放在 (N – 1) 个数的所有排列中,并且那些在添加这个数字后反转计数变为 K 的那些应该添加到我们的答案中。现在取那些让 (K – 3) 倒置的 (N – 1) 数的排列集合,现在我们可以将这个新的最大数从最后一个位置放在第 3 位,那么倒置计数将为 K,因此 count(N – 1 , K – 3) 应该添加到我们的答案中,对于其他反演也可以给出相同的论点,我们将达到上述递归作为最终答案。

下面的代码是按照上面的递归记忆的方式编写的。

C++
// C++ program to find number of permutation
// with K inversion using Memoization
#include 
using namespace std;
 
// Limit on N and K
const int M = 100;
 
// 2D array memo for stopping
// solving same problem again
int memo[M][M];
 
// method recursively calculates
// permutation with K inversion
int numberOfPermWithKInversion(int N, int K)
{
     
    // base cases
    if (N == 0)
        return 0;
    if (K == 0)
        return 1;
 
    // if already solved then
    // return result directly
    if (memo[N][K] != 0)
        return memo[N][K];
 
    // calling recursively all subproblem
    // of permutation size N - 1
    int sum = 0;
    for (int i = 0; i <= K; i++)
    {
 
        // Call recursively only
        // if total inversion
        // to be made are less
        // than size
        if (i <= N - 1)
            sum += numberOfPermWithKInversion(N - 1,
                                              K - i);
    }
 
    // store result into memo
    memo[N][K] = sum;
 
    return sum;
}
 
// Driver code
int main()
{
    int N = 4;
    int K = 2;
    cout << numberOfPermWithKInversion(N, K);
    return 0;
}


Java
// Java program to find number of permutation with
// K inversion using Memoization
 
import java.io.*;
 
class GFG {
     
    // Limit on N and K
    static int M = 100;
 
    // 2D array memo for stopping solving same problem
    // again
    static int memo[][] = new int[M][M];
 
    // method recursively calculates permutation with
    // K inversion
    static int numberOfPermWithKInversion(int N, int K)
    {
         
        // base cases
        if (N == 0)
            return 0;
        if (K == 0)
            return 1;
 
        // if already solved then return result directly
        if (memo[N][K] != 0)
            return memo[N][K];
 
        // calling recursively all subproblem of
        // permutation size N - 1
        int sum = 0;
        for (int i = 0; i <= K; i++) {
             
            // Call recursively only if total inversion
            // to be made are less than size
            if (i <= N - 1)
                sum += numberOfPermWithKInversion(N - 1,
                                                  K - i);
        }
 
        // store result into memo
        memo[N][K] = sum;
 
        return sum;
    }
 
    // Driver code to test above methods
    public static void main(String[] args)
    {
        int N = 4;
        int K = 2;
        System.out.println(numberOfPermWithKInversion(N, K));
    }
}
 
// This code is contributed by vt_m.


Python3
# Python3 program to find number of permutation
# with K inversion using Memoization
 
# Limit on N and K
M = 100
 
# 2D array memo for stopping 
# solving same problem again
memo = [[0 for i in range(M)] for j in range(M)]
  
# method recursively calculates
# permutation with K inversion
def numberOfPermWithKInversion(N, K):
 
    # Base cases
    if (N == 0): return 0
    if (K == 0): return 1
 
    # If already solved then
    # return result directly
    if (memo[N][K] != 0):
        return memo[N][K]
 
    # Calling recursively all subproblem
    # of permutation size N - 1
    sum = 0
    for i in range(K + 1):
     
        # Call recursively only if
        # total inversion to be made
        # are less than size
        if (i <= N - 1):
            sum += numberOfPermWithKInversion(N - 1, K - i)
     
    # store result into memo
    memo[N][K] = sum
 
    return sum
 
# Driver code
N = 4; K = 2
print(numberOfPermWithKInversion(N, K))
 
# This code is contributed by Anant Agarwal.


C#
// C# program to find number of
// permutation with K inversion
// using Memoization
using System;
 
class GFG
{
 
// Limit on N and K
static int M = 100;
 
// 2D array memo for stopping
// solving same problem again
static int [,]memo = new int[M, M];
 
// method recursively calculates
// permutation with K inversion
static int numberOfPermWithKInversion(int N,
                                      int K)
{
     
    // base cases
    if (N == 0)
        return 0;
    if (K == 0)
        return 1;
 
    // if already solved then
    // return result directly
    if (memo[N, K] != 0)
        return memo[N, K];
 
    // calling recursively all
    // subproblem of permutation
    // size N - 1
    int sum = 0;
    for (int i = 0; i <= K; i++)
    {
         
        // Call recursively only if
        // total inversion to be
        // made are less than size
        if (i <= N - 1)
            sum += numberOfPermWithKInversion(N - 1,
                                              K - i);
    }
 
    // store result into memo
    memo[N, K] = sum;
 
    return sum;
}
 
// Driver Code
static public void Main ()
{
    int N = 4;
    int K = 2;
    Console.WriteLine(numberOfPermWithKInversion(N, K));
}
}
 
// This code is contributed by ajit


PHP


Javascript


C++
// C++ program to find number of permutation
// with K inversions
 
#include 
using namespace std;
 
int numberOfPermWithKInversions(int N, int K) {
    vector> dp(N+1,vector(K+1));
   
    // As for k=0, number of permutations is 1 for every N
      for(int i = 1; i <= N; i++)
        dp[i][0] = 1;
 
      // Using Dynamic Programming with cumulative sum
    for(int i = 1; i <= N; i++)
    {
        for(int j = 1; j <= K; j++)
        {
              // This is same as val = dp[i-1][j] - dp[i-1][j-i]
              // i.e. dp[i-1][j........j-i], just taking care of
              // boundaries
            int val = dp[i-1][j];
            if(j >= i)
                val -= dp[i-1][j-i];
 
            dp[i][j] = dp[i][j-1] + val;
        }
    }
   
      // And, in the end calculate the dp[n][k]
      // which is dp[n][k]-dp[n][k-1]
    int ans = dp[N][K];
    if(K >= 1)
        ans -= dp[N][K-1];
 
    return ans;
}
 
int main() {
    int N = 4;
    int K = 2;
     
      cout << numberOfPermWithKInversions(N,K) << "\n";
    return 0;
}


输出
5

时间复杂度: O(N*N*K)

优化方法:使用制表和累积总和

C++

// C++ program to find number of permutation
// with K inversions
 
#include 
using namespace std;
 
int numberOfPermWithKInversions(int N, int K) {
    vector> dp(N+1,vector(K+1));
   
    // As for k=0, number of permutations is 1 for every N
      for(int i = 1; i <= N; i++)
        dp[i][0] = 1;
 
      // Using Dynamic Programming with cumulative sum
    for(int i = 1; i <= N; i++)
    {
        for(int j = 1; j <= K; j++)
        {
              // This is same as val = dp[i-1][j] - dp[i-1][j-i]
              // i.e. dp[i-1][j........j-i], just taking care of
              // boundaries
            int val = dp[i-1][j];
            if(j >= i)
                val -= dp[i-1][j-i];
 
            dp[i][j] = dp[i][j-1] + val;
        }
    }
   
      // And, in the end calculate the dp[n][k]
      // which is dp[n][k]-dp[n][k-1]
    int ans = dp[N][K];
    if(K >= 1)
        ans -= dp[N][K-1];
 
    return ans;
}
 
int main() {
    int N = 4;
    int K = 2;
     
      cout << numberOfPermWithKInversions(N,K) << "\n";
    return 0;
}
输出
5

时间复杂度: O(N*K)

如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程学生竞争性编程现场课程