给定一个数组arr[]由(4 * N + 1)对坐标组成,表示任何N 个正方形的角的坐标,这样只有一个坐标不属于任何正方形,任务是找到不属于任何正方形的坐标不属于任何广场。
例子:
Input: N = 2, arr[] = { {0, 0}, {0, 1}, {0, 2}, {1, 0}, {1, 1}, {1, 2}, {2, 0}, {2, 1}, {2, 2} }
Output: 1 1
Explanation:
The square has four sides: x = 0, x = 2, y = 0, y = 2, now all the points belong to the square except one point (1, 1).
Input: N = 2, arr[] = { {0, 0}, {0, 1}, {0, 2}, {1, 0}, {0, 3}, {1, 2}, {2, 0}, {2, 1}, {2, 2} }
Output: 0 3
方法:根据以下观察可以解决给定的问题:
- 由于N ≥ 2 ,正方形边的坐标将至少出现两次。因此,由于只有一个点不在边界上,因此至少出现两次的 x 坐标之间的最大值将为我们提供正方形右侧的 x 坐标。
- 其他三个边可以类似地通过最大值/最小值和 x-/y 坐标的不同组合获得。
- 知道正方形的边后,很容易识别不在边界上的点。
请按照以下步骤解决问题:
- 使用变量i在范围[0, N] 上迭代并执行以下步骤:
- 初始化变量X1,Y1与2E9和X2,Y2与-2e9存储方的上部和下部边界的点。
- 使用变量j在范围[0, N] 上迭代并执行以下步骤:
- 如果i不等于j ,则执行以下步骤:
- 将x1设置为x1或p[j].first的最小值。
- 将x2设置为x2或p[j].first的最大值。
- 将y1设置为y1或p[j].second 的最小值。
- 将y2设置为y2或p[j].second 的最小值。
- 如果i不等于j ,则执行以下步骤:
- 初始化一个变量,说ok为真,变量cnt1, cnt2, cnt3, cnt4为0以存储具有最大值和最小值的点数为x1, x2, y1, y2 。
- 使用变量j在范围[0, N] 上迭代并执行以下步骤:
- 如果i不等于j ,则执行以下步骤:
- 如果p[j].first等于x1,则将cnt1的值增加1 。
- 如果p[j].first等于x2,则将cnt2的值增加1 。
- 如果p[j].second等于y1,则将cnt3的值增加1 。
- 如果p[j].second等于y2,则将cnt4的值增加1 。
- 否则,将ok的值设置为false 。
- 如果i不等于j ,则执行以下步骤:
- 如果ok的值为真,并且cnt1、cnt2、cnt3、cnt4的值大于等于N,且x2-x2等于y2-y1 ,那么p[i]就是需要的点。打印答案。
下面是上述方法的实现:
C++
// C++ program for the above approach
#include
using namespace std;
typedef long long ll;
#define fi first
#define se second
// Function to find the point that is
// not a part of the side of a square
void findPoint(int n,
vector > p)
{
// Traverse each pair of coordinates
for (int i = 0; i < n * 4 + 1; ++i) {
int x1 = 2e9, x2 = -2e9;
int y1 = 2e9, y2 = -2e9;
for (int j = 0; j < n * 4 + 1; ++j)
if (i != j) {
// Minimize x-coordinate
// in all the points
// except current point
x1 = min(x1, p[j].fi);
// Maximize x-coordinate in
// all the points except
// the current point
x2 = max(x2, p[j].fi);
// Minimize y-coordinate
// in all the points
// except current point
y1 = min(y1, p[j].se);
// Maximize y-coordinate
// in all the points
// except current point
y2 = max(y2, p[j].se);
}
bool ok = 1;
int c1 = 0, c2 = 0;
int c3 = 0, c4 = 0;
for (int j = 1; j <= n * 4 + 1; ++j)
if (i != j) {
// If x-coordinate matches
// with other same line
if ((p[j].fi == x1
|| p[j].fi == x2)
|| ((p[j].se == y1
|| p[j].se == y2))) {
if (p[j].fi == x1)
++c1;
if (p[j].fi == x2)
++c2;
// If y coordinate matches
// with other same line
if (p[j].se == y1)
++c3;
if (p[j].se == y2)
++c4;
}
else
ok = 0;
}
// Check if the condition
// for square exists or not
if (ok && c1 >= n && c2 >= n
&& c3 >= n && c4 >= n
&& x2 - x1 == y2 - y1) {
// Print the output
cout << p[i].fi << " "
<< p[i].se << "\n";
}
}
}
// Driver Code
int main()
{
int N = 2;
vector > arr
= { { 0, 0 }, { 0, 1 }, { 0, 2 },
{ 1, 0 }, { 1, 1 }, { 1, 2 },
{ 2, 0 }, { 2, 1 }, { 2, 2 } };
findPoint(N, arr);
return 0;
}
Java
import java.util.ArrayList;
//Java program for above approach
class GFG{
static class pair{
T fi;
V se;
pair(T a, V b){
this.fi = a;
this.se = b;
}
}
// Function to find the point that is
// not a part of the side of a square
static void findPoint(int n,
ArrayList > p)
{
// Traverse each pair of coordinates
for (int i = 0; i < n * 4 + 1; ++i) {
int x1 = (int) 2e9, x2 = (int) -2e9;
int y1 = (int) 2e9, y2 = (int) -2e9;
for (int j = 0; j < n * 4 + 1; ++j)
if (i != j) {
// Minimize x-coordinate
// in all the points
// except current point
x1 = Math.min(x1, p.get(j).fi);
// Maximize x-coordinate in
// all the points except
// the current point
x2 = Math.max(x2, p.get(j).fi);
// Minimize y-coordinate
// in all the points
// except current point
y1 = Math.min(y1, p.get(j).se);
// Maximize y-coordinate
// in all the points
// except current point
y2 = Math.max(y2, p.get(j).se);
}
boolean ok = true;
int c1 = 0, c2 = 0;
int c3 = 0, c4 = 0;
for (int j = 1; j < n * 4 + 1; ++j)
if (i != j) {
// If x-coordinate matches
// with other same line
if ((p.get(j).fi == x1
|| p.get(j).fi == x2)
|| ((p.get(j).se == y1
|| p.get(j).se == y2))) {
if (p.get(j).fi == x1)
++c1;
if (p.get(j).fi == x2)
++c2;
// If y coordinate matches
// with other same line
if (p.get(j).se == y1)
++c3;
if (p.get(j).se == y2)
++c4;
}
else
ok = false;
}
// Check if the condition
// for square exists or not
if (ok && c1 >= n && c2 >= n
&& c3 >= n && c4 >= n
&& x2 - x1 == y2 - y1) {
// Print the output
System.out.println(p.get(i).fi + " " + p.get(i).se);
}
}
}
//Driver Code
public static void main(String[] args) {
int N = 2;
ArrayList > arr = new ArrayList<>();
arr.add(new pair(0,0));
arr.add(new pair(0,1));
arr.add(new pair(0,2));
arr.add(new pair(1,0));
arr.add(new pair(1,1));
arr.add(new pair(1,2));
arr.add(new pair(2,0));
arr.add(new pair(2,1));
arr.add(new pair(2,2));
findPoint(N, arr);
}
}
// This code is contributed by hritikrommie.
Python3
# Python 3 program for the above approach
# Function to find the point that is
# not a part of the side of a square
def findPoint(n, p):
# Traverse each pair of coordinates
for i in range(n * 4 + 1):
x1 = 2e9
x2 = -2e9
y1 = 2e9
y2 = -2e9
for j in range(n * 4 + 1):
if (i != j):
# Minimize x-coordinate
# in all the points
# except current point
x1 = min(x1, p[j][0])
# Maximize x-coordinate in
# all the points except
# the current point
x2 = max(x2, p[j][0])
# Minimize y-coordinate
# in all the points
# except current point
y1 = min(y1, p[j][1])
# Maximize y-coordinate
# in all the points
# except current point
y2 = max(y2, p[j][1])
ok = 1
c1 = 0
c2 = 0
c3 = 0
c4 = 0
for j in range(1,n * 4 + 1,1):
if (i != j):
# If x-coordinate matches
# with other same line
if ((p[j][0] == x1 or p[j][0] == x2) or (p[j][1] == y1 or p[j][1] == y2)):
if (p[j][0] == x1):
c1 += 1
if (p[j][0] == x2):
c2 += 1
# If y coordinate matches
# with other same line
if (p[j][1] == y1):
c3 += 1
if (p[j][1] == y2):
c4 += 1
else:
ok = 0
# Check if the condition
# for square exists or not
if (ok and c1 >= n and c2 >= n and c3 >= n and c4 >= n and x2 - x1 == y2 - y1):
# Print the output
print(p[i][0],p[i][1])
# Driver Code
if __name__ == '__main__':
N = 2
arr = [[0, 0],[0, 1],[0, 2],[1, 0],[1, 1],[1, 2],[2, 0],[2, 1],[2, 2]]
findPoint(N, arr)
# This code is contributed by ipg2016107.
输出:
1 1
时间复杂度: O(N 2 )
辅助空间: O(1)
如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程和学生竞争性编程现场课程。