给定一个数组和一个数字 k,其中 k 小于数组的大小,我们需要找到给定数组中第 k 个最小的元素。假设所有数组元素都是不同的。
例子:
Input: arr[] = {7, 10, 4, 3, 20, 15}
k = 3
Output: 7
Input: arr[] = {7, 10, 4, 3, 20, 15}
k = 4
Output: 10
我们已经讨论了一个类似的问题来打印 k 个最大的元素。
方法一(简单解)
一个简单的解决方案是使用 O(N log N) 排序算法(如合并排序、堆排序等)对给定数组进行排序,并返回排序数组中索引 k-1 处的元素。
此解决方案的时间复杂度为 O(N Log N)
C++
// Simple C++ program to find k'th smallest element
#include
#include
using namespace std;
// Function to return k'th smallest element in a given array
int kthSmallest(int arr[], int n, int k)
{
// Sort the given array
sort(arr, arr + n);
// Return k'th element in the sorted array
return arr[k - 1];
}
// Driver program to test above methods
int main()
{
int arr[] = { 12, 3, 5, 7, 19 };
int n = sizeof(arr) / sizeof(arr[0]), k = 2;
cout << "K'th smallest element is " << kthSmallest(arr, n, k);
return 0;
}
Java
// Java code for kth smallest element
// in an array
import java.util.Arrays;
import java.util.Collections;
class GFG {
// Function to return k'th smallest
// element in a given array
public static int kthSmallest(Integer[] arr,
int k)
{
// Sort the given array
Arrays.sort(arr);
// Return k'th element in
// the sorted array
return arr[k - 1];
}
// driver program
public static void main(String[] args)
{
Integer arr[] = new Integer[] { 12, 3, 5, 7, 19 };
int k = 2;
System.out.print("K'th smallest element is " + kthSmallest(arr, k));
}
}
// This code is contributed by Chhavi
Python3
# Python3 program to find k'th smallest
# element
# Function to return k'th smallest
# element in a given array
def kthSmallest(arr, n, k):
# Sort the given array
arr.sort()
# Return k'th element in the
# sorted array
return arr[k-1]
# Driver code
if __name__=='__main__':
arr = [12, 3, 5, 7, 19]
n = len(arr)
k = 2
print("K'th smallest element is",
kthSmallest(arr, n, k))
# This code is contributed by
# Shrikant13
C#
// C# code for kth smallest element
// in an array
using System;
class GFG {
// Function to return k'th smallest
// element in a given array
public static int kthSmallest(int[] arr,
int k)
{
// Sort the given array
Array.Sort(arr);
// Return k'th element in
// the sorted array
return arr[k - 1];
}
// driver program
public static void Main()
{
int[] arr = new int[] { 12, 3, 5,
7, 19 };
int k = 2;
Console.Write("K'th smallest element"
+ " is " + kthSmallest(arr, k));
}
}
// This code is contributed by nitin mittal.
PHP
Javascript
C++
/* the following code demonstrates how to find kth smallest
element using set from C++ STL */
#include
using namespace std;
int main()
{
int arr[] = { 12, 3, 5, 7, 19 };
int n = sizeof(arr) / sizeof(arr[0]);
int k = 4;
set s(arr, arr + n);
set::iterator itr
= s.begin(); // s.begin() returns a pointer to first
// element in the set
advance(itr, k - 1); // itr points to kth element in set
cout << *itr << "\n";
return 0;
}
C++
// A C++ program to find k'th smallest element using min heap
#include
#include
using namespace std;
// Prototype of a utility function to swap two integers
void swap(int* x, int* y);
// A class for Min Heap
class MinHeap {
int* harr; // pointer to array of elements in heap
int capacity; // maximum possible size of min heap
int heap_size; // Current number of elements in min heap
public:
MinHeap(int a[], int size); // Constructor
void MinHeapify(int i); // To minheapify subtree rooted with index i
int parent(int i) { return (i - 1) / 2; }
int left(int i) { return (2 * i + 1); }
int right(int i) { return (2 * i + 2); }
int extractMin(); // extracts root (minimum) element
int getMin() { return harr[0]; } // Returns minimum
};
MinHeap::MinHeap(int a[], int size)
{
heap_size = size;
harr = a; // store address of array
int i = (heap_size - 1) / 2;
while (i >= 0) {
MinHeapify(i);
i--;
}
}
// Method to remove minimum element (or root) from min heap
int MinHeap::extractMin()
{
if (heap_size == 0)
return INT_MAX;
// Store the minimum vakue.
int root = harr[0];
// If there are more than 1 items, move the last item to root
// and call heapify.
if (heap_size > 1) {
harr[0] = harr[heap_size - 1];
MinHeapify(0);
}
heap_size--;
return root;
}
// A recursive method to heapify a subtree with root at given index
// This method assumes that the subtrees are already heapified
void MinHeap::MinHeapify(int i)
{
int l = left(i);
int r = right(i);
int smallest = i;
if (l < heap_size && harr[l] < harr[i])
smallest = l;
if (r < heap_size && harr[r] < harr[smallest])
smallest = r;
if (smallest != i) {
swap(&harr[i], &harr[smallest]);
MinHeapify(smallest);
}
}
// A utility function to swap two elements
void swap(int* x, int* y)
{
int temp = *x;
*x = *y;
*y = temp;
}
// Function to return k'th smallest element in a given array
int kthSmallest(int arr[], int n, int k)
{
// Build a heap of n elements: O(n) time
MinHeap mh(arr, n);
// Do extract min (k-1) times
for (int i = 0; i < k - 1; i++)
mh.extractMin();
// Return root
return mh.getMin();
}
// Driver program to test above methods
int main()
{
int arr[] = { 12, 3, 5, 7, 19 };
int n = sizeof(arr) / sizeof(arr[0]), k = 2;
cout << "K'th smallest element is " << kthSmallest(arr, n, k);
return 0;
}
Java
// A Java program to find k'th smallest element using min heap
import java.util.*;
class GFG
{
// A class for Max Heap
class MinHeap
{
int[] harr; // pointer to array of elements in heap
int capacity; // maximum possible size of min heap
int heap_size; // Current number of elements in min heap
int parent(int i) { return (i - 1) / 2; }
int left(int i) { return ((2 * i )+ 1); }
int right(int i) { return ((2 * i) + 2); }
int getMin() { return harr[0]; } // Returns minimum
// to replace root with new node x and heapify() new root
void replaceMax(int x)
{
this.harr[0] = x;
minHeapify(0);
}
MinHeap(int a[], int size)
{
heap_size = size;
harr = a; // store address of array
int i = (heap_size - 1) / 2;
while (i >= 0)
{
minHeapify(i);
i--;
}
}
// Method to remove maximum element (or root) from min heap
int extractMin()
{
if (heap_size == 0)
return Integer.MAX_VALUE;
// Store the maximum vakue.
int root = harr[0];
// If there are more than 1 items, move the last item to root
// and call heapify.
if (heap_size > 1)
{
harr[0] = harr[heap_size - 1];
minHeapify(0);
}
heap_size--;
return root;
}
// A recursive method to heapify a subtree with root at given index
// This method assumes that the subtrees are already heapified
void minHeapify(int i)
{
int l = left(i);
int r = right(i);
int smallest = i;
if (l < heap_size && harr[l] < harr[i])
smallest = l;
if (r < heap_size && harr[r] < harr[smallest])
smallest = r;
if (smallest != i)
{
int t = harr[i];
harr[i] = harr[smallest];
harr[smallest] = t;
minHeapify(smallest);
}
}
};
// Function to return k'th largest element in a given array
int kthSmallest(int arr[], int n, int k)
{
// Build a heap of first k elements: O(k) time
MinHeap mh = new MinHeap(arr, n);
// Process remaining n-k elements. If current element is
// smaller than root, replace root with current element
for (int i = 0; i < k - 1; i++)
mh.extractMin();
// Return root
return mh.getMin();
}
// Driver program to test above methods
public static void main(String[] args)
{
int arr[] = { 12, 3, 5, 7, 19 };
int n = arr.length, k = 2;
GFG gfg = new GFG();
System.out.print("K'th smallest element is " +
gfg.kthSmallest(arr, n, k));
}
}
// This code is contributed by avanitrachhadiya2155
C#
using System;
public class GFG
{
public class MinHeap
{
int[] harr; // pointer to array of elements in heap
// int capacity; // maximum possible size of min heap
int heap_size; // Current number of elements in min heap
int parent(int i) { return (i - 1) / 2; }
int left(int i) { return ((2 * i )+ 1); }
int right(int i) { return ((2 * i) + 2); }
public int getMin() { return harr[0]; } // Returns minimum
// to replace root with new node x and heapify() new root
public void replaceMax(int x)
{
this.harr[0] = x;
minHeapify(0);
}
public MinHeap(int[] a, int size)
{
heap_size = size;
harr = a; // store address of array
int i = (heap_size - 1) / 2;
while (i >= 0)
{
minHeapify(i);
i--;
}
}
// Method to remove maximum element (or root) from min heap
public int extractMin()
{
if (heap_size == 0)
return Int32.MaxValue;
// Store the maximum vakue.
int root = harr[0];
// If there are more than 1 items, move the last item to root
// and call heapify.
if (heap_size > 1)
{
harr[0] = harr[heap_size - 1];
minHeapify(0);
}
heap_size--;
return root;
}
// A recursive method to heapify a subtree with root at given index
// This method assumes that the subtrees are already heapified
public void minHeapify(int i)
{
int l = left(i);
int r = right(i);
int smallest = i;
if (l < heap_size && harr[l] < harr[i])
smallest = l;
if (r < heap_size && harr[r] < harr[smallest])
smallest = r;
if (smallest != i)
{
int t = harr[i];
harr[i] = harr[smallest];
harr[smallest] = t;
minHeapify(smallest);
}
}
};
// Function to return k'th largest element in a given array
int kthSmallest(int[] arr, int n, int k)
{
// Build a heap of first k elements: O(k) time
MinHeap mh = new MinHeap(arr, n);
// Process remaining n-k elements. If current element is
// smaller than root, replace root with current element
for (int i = 0; i < k - 1; i++)
mh.extractMin();
// Return root
return mh.getMin();
}
// Driver program to test above methods
static public void Main (){
int[] arr = { 12, 3, 5, 7, 19 };
int n = arr.Length, k = 2;
GFG gfg = new GFG();
Console.Write("K'th smallest element is " +
gfg.kthSmallest(arr, n, k));
}
}
// This code is contributed by rag2127
C++
// A C++ program to find k'th smallest element using max heap
#include
#include
using namespace std;
// Prototype of a utility function to swap two integers
void swap(int* x, int* y);
// A class for Max Heap
class MaxHeap {
int* harr; // pointer to array of elements in heap
int capacity; // maximum possible size of max heap
int heap_size; // Current number of elements in max heap
public:
MaxHeap(int a[], int size); // Constructor
void maxHeapify(int i); // To maxHeapify subtree rooted with index i
int parent(int i) { return (i - 1) / 2; }
int left(int i) { return (2 * i + 1); }
int right(int i) { return (2 * i + 2); }
int extractMax(); // extracts root (maximum) element
int getMax() { return harr[0]; } // Returns maximum
// to replace root with new node x and heapify() new root
void replaceMax(int x)
{
harr[0] = x;
maxHeapify(0);
}
};
MaxHeap::MaxHeap(int a[], int size)
{
heap_size = size;
harr = a; // store address of array
int i = (heap_size - 1) / 2;
while (i >= 0) {
maxHeapify(i);
i--;
}
}
// Method to remove maximum element (or root) from max heap
int MaxHeap::extractMax()
{
if (heap_size == 0)
return INT_MAX;
// Store the maximum vakue.
int root = harr[0];
// If there are more than 1 items, move the last item to root
// and call heapify.
if (heap_size > 1) {
harr[0] = harr[heap_size - 1];
maxHeapify(0);
}
heap_size--;
return root;
}
// A recursive method to heapify a subtree with root at given index
// This method assumes that the subtrees are already heapified
void MaxHeap::maxHeapify(int i)
{
int l = left(i);
int r = right(i);
int largest = i;
if (l < heap_size && harr[l] > harr[i])
largest = l;
if (r < heap_size && harr[r] > harr[largest])
largest = r;
if (largest != i) {
swap(&harr[i], &harr[largest]);
maxHeapify(largest);
}
}
// A utility function to swap two elements
void swap(int* x, int* y)
{
int temp = *x;
*x = *y;
*y = temp;
}
// Function to return k'th largest element in a given array
int kthSmallest(int arr[], int n, int k)
{
// Build a heap of first k elements: O(k) time
MaxHeap mh(arr, k);
// Process remaining n-k elements. If current element is
// smaller than root, replace root with current element
for (int i = k; i < n; i++)
if (arr[i] < mh.getMax())
mh.replaceMax(arr[i]);
// Return root
return mh.getMax();
}
// Driver program to test above methods
int main()
{
int arr[] = { 12, 3, 5, 7, 19 };
int n = sizeof(arr) / sizeof(arr[0]), k = 4;
cout << "K'th smallest element is " << kthSmallest(arr, n, k);
return 0;
}
Java
// A Java program to find k'th smallest element using max heap
import java.util.*;
class GFG
{
// A class for Max Heap
class MaxHeap
{
int[] harr; // pointer to array of elements in heap
int capacity; // maximum possible size of max heap
int heap_size; // Current number of elements in max heap
int parent(int i) { return (i - 1) / 2; }
int left(int i) { return (2 * i + 1); }
int right(int i) { return (2 * i + 2); }
int getMax() { return harr[0]; } // Returns maximum
// to replace root with new node x and heapify() new root
void replaceMax(int x)
{
this.harr[0] = x;
maxHeapify(0);
}
MaxHeap(int a[], int size)
{
heap_size = size;
harr = a; // store address of array
int i = (heap_size - 1) / 2;
while (i >= 0)
{
maxHeapify(i);
i--;
}
}
// Method to remove maximum element (or root) from max heap
int extractMax()
{
if (heap_size == 0)
return Integer.MAX_VALUE;
// Store the maximum vakue.
int root = harr[0];
// If there are more than 1 items, move the last item to root
// and call heapify.
if (heap_size > 1)
{
harr[0] = harr[heap_size - 1];
maxHeapify(0);
}
heap_size--;
return root;
}
// A recursive method to heapify a subtree with root at given index
// This method assumes that the subtrees are already heapified
void maxHeapify(int i)
{
int l = left(i);
int r = right(i);
int largest = i;
if (l < heap_size && harr[l] > harr[i])
largest = l;
if (r < heap_size && harr[r] > harr[largest])
largest = r;
if (largest != i)
{
int t = harr[i];
harr[i] = harr[largest];
harr[largest] = t;
maxHeapify(largest);
}
}
};
// Function to return k'th largest element in a given array
int kthSmallest(int arr[], int n, int k)
{
// Build a heap of first k elements: O(k) time
MaxHeap mh = new MaxHeap(arr, k);
// Process remaining n-k elements. If current element is
// smaller than root, replace root with current element
for (int i = k; i < n; i++)
if (arr[i] < mh.getMax())
mh.replaceMax(arr[i]);
// Return root
return mh.getMax();
}
// Driver program to test above methods
public static void main(String[] args)
{
int arr[] = { 12, 3, 5, 7, 19 };
int n = arr.length, k = 4;
GFG gfg = new GFG();
System.out.print("K'th smallest element is " +
gfg.kthSmallest(arr, n, k));
}
}
// This code is contributed by Rajput-Ji
C#
// A C# program to find k'th smallest element using max heap
using System;
public class GFG {
// A class for Max Heap
public
class MaxHeap {
public
int[] harr; // pointer to array of elements in
// heap
public
int capacity; // maximum possible size of max
// heap
public
int heap_size; // Current number of elements in
// max heap
public
int
parent(int i)
{
return (i - 1) / 2;
}
public
int
left(int i)
{
return (2 * i + 1);
}
public
int
right(int i)
{
return (2 * i + 2);
}
public
int
getMax()
{
return harr[0];
} // Returns maximum
// to replace root with new node x and heapify() new
// root
public
void
replaceMax(int x)
{
this.harr[0] = x;
maxHeapify(0);
}
public
MaxHeap(int[] a, int size)
{
heap_size = size;
harr = a; // store address of array
int i = (heap_size - 1) / 2;
while (i >= 0) {
maxHeapify(i);
i--;
}
}
// Method to remove maximum element (or root) from
// max heap
public
int
extractMax()
{
if (heap_size == 0)
return int.MaxValue;
// Store the maximum vakue.
int root = harr[0];
// If there are more than 1 items, move the last
// item to root and call heapify.
if (heap_size > 1) {
harr[0] = harr[heap_size - 1];
maxHeapify(0);
}
heap_size--;
return root;
}
// A recursive method to heapify a subtree with root
// at given index This method assumes that the
// subtrees are already heapified
public
void
maxHeapify(int i)
{
int l = left(i);
int r = right(i);
int largest = i;
if (l < heap_size && harr[l] > harr[i])
largest = l;
if (r < heap_size && harr[r] > harr[largest])
largest = r;
if (largest != i) {
int t = harr[i];
harr[i] = harr[largest];
harr[largest] = t;
maxHeapify(largest);
}
}
};
// Function to return k'th largest element in a given
// array
int kthSmallest(int[] arr, int n, int k)
{
// Build a heap of first k elements: O(k) time
MaxHeap mh = new MaxHeap(arr, k);
// Process remaining n-k elements. If current
// element is smaller than root, replace root with
// current element
for (int i = k; i < n; i++)
if (arr[i] < mh.getMax())
mh.replaceMax(arr[i]);
// Return root
return mh.getMax();
}
// Driver code
public static void Main(String[] args)
{
int[] arr = { 12, 3, 5, 7, 19 };
int n = arr.Length, k = 4;
GFG gfg = new GFG();
Console.Write("K'th smallest element is "
+ gfg.kthSmallest(arr, n, k));
}
}
// This code is contributed by gauravrajput1
C++
#include
#include
using namespace std;
int partition(int arr[], int l, int r);
// This function returns k'th smallest element in arr[l..r] using
// QuickSort based method. ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCT
int kthSmallest(int arr[], int l, int r, int k)
{
// If k is smaller than number of elements in array
if (k > 0 && k <= r - l + 1) {
// Partition the array around last element and get
// position of pivot element in sorted array
int pos = partition(arr, l, r);
// If position is same as k
if (pos - l == k - 1)
return arr[pos];
if (pos - l > k - 1) // If position is more, recur for left subarray
return kthSmallest(arr, l, pos - 1, k);
// Else recur for right subarray
return kthSmallest(arr, pos + 1, r, k - pos + l - 1);
}
// If k is more than number of elements in array
return INT_MAX;
}
void swap(int* a, int* b)
{
int temp = *a;
*a = *b;
*b = temp;
}
// Standard partition process of QuickSort(). It considers the last
// element as pivot and moves all smaller element to left of it
// and greater elements to right
int partition(int arr[], int l, int r)
{
int x = arr[r], i = l;
for (int j = l; j <= r - 1; j++) {
if (arr[j] <= x) {
swap(&arr[i], &arr[j]);
i++;
}
}
swap(&arr[i], &arr[r]);
return i;
}
// Driver program to test above methods
int main()
{
int arr[] = { 12, 3, 5, 7, 4, 19, 26 };
int n = sizeof(arr) / sizeof(arr[0]), k = 3;
cout << "K'th smallest element is " << kthSmallest(arr, 0, n - 1, k);
return 0;
}
Java
// Java code for kth smallest element in an array
import java.util.Arrays;
import java.util.Collections;
class GFG {
// Standard partition process of QuickSort.
// It considers the last element as pivot
// and moves all smaller element to left of
// it and greater elements to right
public static int partition(Integer[] arr, int l,
int r)
{
int x = arr[r], i = l;
for (int j = l; j <= r - 1; j++) {
if (arr[j] <= x) {
// Swapping arr[i] and arr[j]
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i++;
}
}
// Swapping arr[i] and arr[r]
int temp = arr[i];
arr[i] = arr[r];
arr[r] = temp;
return i;
}
// This function returns k'th smallest element
// in arr[l..r] using QuickSort based method.
// ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCT
public static int kthSmallest(Integer[] arr, int l,
int r, int k)
{
// If k is smaller than number of elements
// in array
if (k > 0 && k <= r - l + 1) {
// Partition the array around last
// element and get position of pivot
// element in sorted array
int pos = partition(arr, l, r);
// If position is same as k
if (pos - l == k - 1)
return arr[pos];
// If position is more, recur for
// left subarray
if (pos - l > k - 1)
return kthSmallest(arr, l, pos - 1, k);
// Else recur for right subarray
return kthSmallest(arr, pos + 1, r, k - pos + l - 1);
}
// If k is more than number of elements
// in array
return Integer.MAX_VALUE;
}
// Driver program to test above methods
public static void main(String[] args)
{
Integer arr[] = new Integer[] { 12, 3, 5, 7, 4, 19, 26 };
int k = 3;
System.out.print("K'th smallest element is " + kthSmallest(arr, 0, arr.length - 1, k));
}
}
// This code is contributed by Chhavi
Python3
# This function returns k'th smallest element
# in arr[l..r] using QuickSort based method.
# ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCT
import sys
def kthSmallest(arr, l, r, k):
# If k is smaller than number of
# elements in array
if (k > 0 and k <= r - l + 1):
# Partition the array around last
# element and get position of pivot
# element in sorted array
pos = partition(arr, l, r)
# If position is same as k
if (pos - l == k - 1):
return arr[pos]
if (pos - l > k - 1): # If position is more,
# recur for left subarray
return kthSmallest(arr, l, pos - 1, k)
# Else recur for right subarray
return kthSmallest(arr, pos + 1, r,
k - pos + l - 1)
# If k is more than number of
# elements in array
return sys.maxsize
# Standard partition process of QuickSort().
# It considers the last element as pivot and
# moves all smaller element to left of it
# and greater elements to right
def partition(arr, l, r):
x = arr[r]
i = l
for j in range(l, r):
if (arr[j] <= x):
arr[i], arr[j] = arr[j], arr[i]
i += 1
arr[i], arr[r] = arr[r], arr[i]
return i
# Driver Code
if __name__ == "__main__":
arr = [12, 3, 5, 7, 4, 19, 26]
n = len(arr)
k = 3;
print("K'th smallest element is",
kthSmallest(arr, 0, n - 1, k))
# This code is contributed by ita_c
C#
// C# code for kth smallest element
// in an array
using System;
class GFG {
// Standard partition process of QuickSort.
// It considers the last element as pivot
// and moves all smaller element to left of
// it and greater elements to right
public static int partition(int[] arr,
int l, int r)
{
int x = arr[r], i = l;
int temp = 0;
for (int j = l; j <= r - 1; j++) {
if (arr[j] <= x) {
// Swapping arr[i] and arr[j]
temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i++;
}
}
// Swapping arr[i] and arr[r]
temp = arr[i];
arr[i] = arr[r];
arr[r] = temp;
return i;
}
// This function returns k'th smallest
// element in arr[l..r] using QuickSort
// based method. ASSUMPTION: ALL ELEMENTS
// IN ARR[] ARE DISTINCT
public static int kthSmallest(int[] arr, int l,
int r, int k)
{
// If k is smaller than number
// of elements in array
if (k > 0 && k <= r - l + 1) {
// Partition the array around last
// element and get position of pivot
// element in sorted array
int pos = partition(arr, l, r);
// If position is same as k
if (pos - l == k - 1)
return arr[pos];
// If position is more, recur for
// left subarray
if (pos - l > k - 1)
return kthSmallest(arr, l, pos - 1, k);
// Else recur for right subarray
return kthSmallest(arr, pos + 1, r,
k - pos + l - 1);
}
// If k is more than number
// of elements in array
return int.MaxValue;
}
// Driver Code
public static void Main()
{
int[] arr = { 12, 3, 5, 7, 4, 19, 26 };
int k = 3;
Console.Write("K'th smallest element is " + kthSmallest(arr, 0, arr.Length - 1, k));
}
}
// This code is contributed
// by 29AjayKumar
Javascript
C++
#include
using namespace std;
int Kth_smallest(map m, int k)
{
int freq = 0;
for (auto it = m.begin(); it != m.end(); it++) {
freq += (it->second); // adding the frequencies of
// each element
if (freq >= k) // if at any point frequency becomes
// greater than or equal to k then
// return that element
{
return it->first;
}
}
return -1; // returning -1 if k>size of the array which
// is an impossible scenario
}
int main()
{
int n = 5;
int k = 2;
vector arr = { 12, 3, 5, 7, 19 };
map m;
for (int i = 0; i < n; i++) {
m[arr[i]] += 1; // mapping every element with it's
// frequency
}
int ans = Kth_smallest(m, k);
cout << "The " << k << "rd smallest element is " << ans
<< endl;
return 0;
}
K'th smallest element is 5
方法 2(使用 C++ STL 中的 set)
我们可以在时间复杂度上找到比 O(N log N) 更好的第 k 个最小元素。我们知道 C++ STL 中的 Set 是使用二叉搜索树实现的,我们也知道 BST 中所有情况(搜索、插入、删除)的时间复杂度在平均情况下为 log (n),在最坏情况下为 O(n)。我们使用 set 是因为问题中提到数组中的所有元素都是不同的。
以下是上述方法的C++实现。
C++
/* the following code demonstrates how to find kth smallest
element using set from C++ STL */
#include
using namespace std;
int main()
{
int arr[] = { 12, 3, 5, 7, 19 };
int n = sizeof(arr) / sizeof(arr[0]);
int k = 4;
set s(arr, arr + n);
set::iterator itr
= s.begin(); // s.begin() returns a pointer to first
// element in the set
advance(itr, k - 1); // itr points to kth element in set
cout << *itr << "\n";
return 0;
}
10
时间复杂度:平均情况下为 O(log N),最坏情况下为 O(N)
辅助空间: O(N)
方法三(使用最小堆——HeapSelect)
我们可以找到比 O(N Log N) 更好的时间复杂度的第 k 个最小元素。一个简单的优化是为给定的 n 个元素创建一个 Min Heap 并调用 extractMin() k 次。
以下是上述方法的C++实现。
C++
// A C++ program to find k'th smallest element using min heap
#include
#include
using namespace std;
// Prototype of a utility function to swap two integers
void swap(int* x, int* y);
// A class for Min Heap
class MinHeap {
int* harr; // pointer to array of elements in heap
int capacity; // maximum possible size of min heap
int heap_size; // Current number of elements in min heap
public:
MinHeap(int a[], int size); // Constructor
void MinHeapify(int i); // To minheapify subtree rooted with index i
int parent(int i) { return (i - 1) / 2; }
int left(int i) { return (2 * i + 1); }
int right(int i) { return (2 * i + 2); }
int extractMin(); // extracts root (minimum) element
int getMin() { return harr[0]; } // Returns minimum
};
MinHeap::MinHeap(int a[], int size)
{
heap_size = size;
harr = a; // store address of array
int i = (heap_size - 1) / 2;
while (i >= 0) {
MinHeapify(i);
i--;
}
}
// Method to remove minimum element (or root) from min heap
int MinHeap::extractMin()
{
if (heap_size == 0)
return INT_MAX;
// Store the minimum vakue.
int root = harr[0];
// If there are more than 1 items, move the last item to root
// and call heapify.
if (heap_size > 1) {
harr[0] = harr[heap_size - 1];
MinHeapify(0);
}
heap_size--;
return root;
}
// A recursive method to heapify a subtree with root at given index
// This method assumes that the subtrees are already heapified
void MinHeap::MinHeapify(int i)
{
int l = left(i);
int r = right(i);
int smallest = i;
if (l < heap_size && harr[l] < harr[i])
smallest = l;
if (r < heap_size && harr[r] < harr[smallest])
smallest = r;
if (smallest != i) {
swap(&harr[i], &harr[smallest]);
MinHeapify(smallest);
}
}
// A utility function to swap two elements
void swap(int* x, int* y)
{
int temp = *x;
*x = *y;
*y = temp;
}
// Function to return k'th smallest element in a given array
int kthSmallest(int arr[], int n, int k)
{
// Build a heap of n elements: O(n) time
MinHeap mh(arr, n);
// Do extract min (k-1) times
for (int i = 0; i < k - 1; i++)
mh.extractMin();
// Return root
return mh.getMin();
}
// Driver program to test above methods
int main()
{
int arr[] = { 12, 3, 5, 7, 19 };
int n = sizeof(arr) / sizeof(arr[0]), k = 2;
cout << "K'th smallest element is " << kthSmallest(arr, n, k);
return 0;
}
Java
// A Java program to find k'th smallest element using min heap
import java.util.*;
class GFG
{
// A class for Max Heap
class MinHeap
{
int[] harr; // pointer to array of elements in heap
int capacity; // maximum possible size of min heap
int heap_size; // Current number of elements in min heap
int parent(int i) { return (i - 1) / 2; }
int left(int i) { return ((2 * i )+ 1); }
int right(int i) { return ((2 * i) + 2); }
int getMin() { return harr[0]; } // Returns minimum
// to replace root with new node x and heapify() new root
void replaceMax(int x)
{
this.harr[0] = x;
minHeapify(0);
}
MinHeap(int a[], int size)
{
heap_size = size;
harr = a; // store address of array
int i = (heap_size - 1) / 2;
while (i >= 0)
{
minHeapify(i);
i--;
}
}
// Method to remove maximum element (or root) from min heap
int extractMin()
{
if (heap_size == 0)
return Integer.MAX_VALUE;
// Store the maximum vakue.
int root = harr[0];
// If there are more than 1 items, move the last item to root
// and call heapify.
if (heap_size > 1)
{
harr[0] = harr[heap_size - 1];
minHeapify(0);
}
heap_size--;
return root;
}
// A recursive method to heapify a subtree with root at given index
// This method assumes that the subtrees are already heapified
void minHeapify(int i)
{
int l = left(i);
int r = right(i);
int smallest = i;
if (l < heap_size && harr[l] < harr[i])
smallest = l;
if (r < heap_size && harr[r] < harr[smallest])
smallest = r;
if (smallest != i)
{
int t = harr[i];
harr[i] = harr[smallest];
harr[smallest] = t;
minHeapify(smallest);
}
}
};
// Function to return k'th largest element in a given array
int kthSmallest(int arr[], int n, int k)
{
// Build a heap of first k elements: O(k) time
MinHeap mh = new MinHeap(arr, n);
// Process remaining n-k elements. If current element is
// smaller than root, replace root with current element
for (int i = 0; i < k - 1; i++)
mh.extractMin();
// Return root
return mh.getMin();
}
// Driver program to test above methods
public static void main(String[] args)
{
int arr[] = { 12, 3, 5, 7, 19 };
int n = arr.length, k = 2;
GFG gfg = new GFG();
System.out.print("K'th smallest element is " +
gfg.kthSmallest(arr, n, k));
}
}
// This code is contributed by avanitrachhadiya2155
C#
using System;
public class GFG
{
public class MinHeap
{
int[] harr; // pointer to array of elements in heap
// int capacity; // maximum possible size of min heap
int heap_size; // Current number of elements in min heap
int parent(int i) { return (i - 1) / 2; }
int left(int i) { return ((2 * i )+ 1); }
int right(int i) { return ((2 * i) + 2); }
public int getMin() { return harr[0]; } // Returns minimum
// to replace root with new node x and heapify() new root
public void replaceMax(int x)
{
this.harr[0] = x;
minHeapify(0);
}
public MinHeap(int[] a, int size)
{
heap_size = size;
harr = a; // store address of array
int i = (heap_size - 1) / 2;
while (i >= 0)
{
minHeapify(i);
i--;
}
}
// Method to remove maximum element (or root) from min heap
public int extractMin()
{
if (heap_size == 0)
return Int32.MaxValue;
// Store the maximum vakue.
int root = harr[0];
// If there are more than 1 items, move the last item to root
// and call heapify.
if (heap_size > 1)
{
harr[0] = harr[heap_size - 1];
minHeapify(0);
}
heap_size--;
return root;
}
// A recursive method to heapify a subtree with root at given index
// This method assumes that the subtrees are already heapified
public void minHeapify(int i)
{
int l = left(i);
int r = right(i);
int smallest = i;
if (l < heap_size && harr[l] < harr[i])
smallest = l;
if (r < heap_size && harr[r] < harr[smallest])
smallest = r;
if (smallest != i)
{
int t = harr[i];
harr[i] = harr[smallest];
harr[smallest] = t;
minHeapify(smallest);
}
}
};
// Function to return k'th largest element in a given array
int kthSmallest(int[] arr, int n, int k)
{
// Build a heap of first k elements: O(k) time
MinHeap mh = new MinHeap(arr, n);
// Process remaining n-k elements. If current element is
// smaller than root, replace root with current element
for (int i = 0; i < k - 1; i++)
mh.extractMin();
// Return root
return mh.getMin();
}
// Driver program to test above methods
static public void Main (){
int[] arr = { 12, 3, 5, 7, 19 };
int n = arr.Length, k = 2;
GFG gfg = new GFG();
Console.Write("K'th smallest element is " +
gfg.kthSmallest(arr, n, k));
}
}
// This code is contributed by rag2127
K'th smallest element is 5
该解决方案的时间复杂度为 O(n + kLogn)。
方法四(使用最大堆)
我们还可以使用 Max Heap 来查找第 k 个最小元素。下面是一个算法。
1) 为给定数组的前 k 个元素(arr[0] 到 arr[k-1])构建一个 Max-Heap MH。好的)
2)对于每个元素,在第k个元素(arr[k]到arr[n-1])之后,与MH的根进行比较。
……a) 如果元素小于根,则将其设为根并为 MH 调用 heapify
……b) 否则忽略它。
// 第 2 步是 O((nk)*logk)
3)最后,MH的根是第k个最小的元素。
该解决方案的时间复杂度为 O(k + (nk)*Logk)
下面是上述算法的C++实现
C++
// A C++ program to find k'th smallest element using max heap
#include
#include
using namespace std;
// Prototype of a utility function to swap two integers
void swap(int* x, int* y);
// A class for Max Heap
class MaxHeap {
int* harr; // pointer to array of elements in heap
int capacity; // maximum possible size of max heap
int heap_size; // Current number of elements in max heap
public:
MaxHeap(int a[], int size); // Constructor
void maxHeapify(int i); // To maxHeapify subtree rooted with index i
int parent(int i) { return (i - 1) / 2; }
int left(int i) { return (2 * i + 1); }
int right(int i) { return (2 * i + 2); }
int extractMax(); // extracts root (maximum) element
int getMax() { return harr[0]; } // Returns maximum
// to replace root with new node x and heapify() new root
void replaceMax(int x)
{
harr[0] = x;
maxHeapify(0);
}
};
MaxHeap::MaxHeap(int a[], int size)
{
heap_size = size;
harr = a; // store address of array
int i = (heap_size - 1) / 2;
while (i >= 0) {
maxHeapify(i);
i--;
}
}
// Method to remove maximum element (or root) from max heap
int MaxHeap::extractMax()
{
if (heap_size == 0)
return INT_MAX;
// Store the maximum vakue.
int root = harr[0];
// If there are more than 1 items, move the last item to root
// and call heapify.
if (heap_size > 1) {
harr[0] = harr[heap_size - 1];
maxHeapify(0);
}
heap_size--;
return root;
}
// A recursive method to heapify a subtree with root at given index
// This method assumes that the subtrees are already heapified
void MaxHeap::maxHeapify(int i)
{
int l = left(i);
int r = right(i);
int largest = i;
if (l < heap_size && harr[l] > harr[i])
largest = l;
if (r < heap_size && harr[r] > harr[largest])
largest = r;
if (largest != i) {
swap(&harr[i], &harr[largest]);
maxHeapify(largest);
}
}
// A utility function to swap two elements
void swap(int* x, int* y)
{
int temp = *x;
*x = *y;
*y = temp;
}
// Function to return k'th largest element in a given array
int kthSmallest(int arr[], int n, int k)
{
// Build a heap of first k elements: O(k) time
MaxHeap mh(arr, k);
// Process remaining n-k elements. If current element is
// smaller than root, replace root with current element
for (int i = k; i < n; i++)
if (arr[i] < mh.getMax())
mh.replaceMax(arr[i]);
// Return root
return mh.getMax();
}
// Driver program to test above methods
int main()
{
int arr[] = { 12, 3, 5, 7, 19 };
int n = sizeof(arr) / sizeof(arr[0]), k = 4;
cout << "K'th smallest element is " << kthSmallest(arr, n, k);
return 0;
}
Java
// A Java program to find k'th smallest element using max heap
import java.util.*;
class GFG
{
// A class for Max Heap
class MaxHeap
{
int[] harr; // pointer to array of elements in heap
int capacity; // maximum possible size of max heap
int heap_size; // Current number of elements in max heap
int parent(int i) { return (i - 1) / 2; }
int left(int i) { return (2 * i + 1); }
int right(int i) { return (2 * i + 2); }
int getMax() { return harr[0]; } // Returns maximum
// to replace root with new node x and heapify() new root
void replaceMax(int x)
{
this.harr[0] = x;
maxHeapify(0);
}
MaxHeap(int a[], int size)
{
heap_size = size;
harr = a; // store address of array
int i = (heap_size - 1) / 2;
while (i >= 0)
{
maxHeapify(i);
i--;
}
}
// Method to remove maximum element (or root) from max heap
int extractMax()
{
if (heap_size == 0)
return Integer.MAX_VALUE;
// Store the maximum vakue.
int root = harr[0];
// If there are more than 1 items, move the last item to root
// and call heapify.
if (heap_size > 1)
{
harr[0] = harr[heap_size - 1];
maxHeapify(0);
}
heap_size--;
return root;
}
// A recursive method to heapify a subtree with root at given index
// This method assumes that the subtrees are already heapified
void maxHeapify(int i)
{
int l = left(i);
int r = right(i);
int largest = i;
if (l < heap_size && harr[l] > harr[i])
largest = l;
if (r < heap_size && harr[r] > harr[largest])
largest = r;
if (largest != i)
{
int t = harr[i];
harr[i] = harr[largest];
harr[largest] = t;
maxHeapify(largest);
}
}
};
// Function to return k'th largest element in a given array
int kthSmallest(int arr[], int n, int k)
{
// Build a heap of first k elements: O(k) time
MaxHeap mh = new MaxHeap(arr, k);
// Process remaining n-k elements. If current element is
// smaller than root, replace root with current element
for (int i = k; i < n; i++)
if (arr[i] < mh.getMax())
mh.replaceMax(arr[i]);
// Return root
return mh.getMax();
}
// Driver program to test above methods
public static void main(String[] args)
{
int arr[] = { 12, 3, 5, 7, 19 };
int n = arr.length, k = 4;
GFG gfg = new GFG();
System.out.print("K'th smallest element is " +
gfg.kthSmallest(arr, n, k));
}
}
// This code is contributed by Rajput-Ji
C#
// A C# program to find k'th smallest element using max heap
using System;
public class GFG {
// A class for Max Heap
public
class MaxHeap {
public
int[] harr; // pointer to array of elements in
// heap
public
int capacity; // maximum possible size of max
// heap
public
int heap_size; // Current number of elements in
// max heap
public
int
parent(int i)
{
return (i - 1) / 2;
}
public
int
left(int i)
{
return (2 * i + 1);
}
public
int
right(int i)
{
return (2 * i + 2);
}
public
int
getMax()
{
return harr[0];
} // Returns maximum
// to replace root with new node x and heapify() new
// root
public
void
replaceMax(int x)
{
this.harr[0] = x;
maxHeapify(0);
}
public
MaxHeap(int[] a, int size)
{
heap_size = size;
harr = a; // store address of array
int i = (heap_size - 1) / 2;
while (i >= 0) {
maxHeapify(i);
i--;
}
}
// Method to remove maximum element (or root) from
// max heap
public
int
extractMax()
{
if (heap_size == 0)
return int.MaxValue;
// Store the maximum vakue.
int root = harr[0];
// If there are more than 1 items, move the last
// item to root and call heapify.
if (heap_size > 1) {
harr[0] = harr[heap_size - 1];
maxHeapify(0);
}
heap_size--;
return root;
}
// A recursive method to heapify a subtree with root
// at given index This method assumes that the
// subtrees are already heapified
public
void
maxHeapify(int i)
{
int l = left(i);
int r = right(i);
int largest = i;
if (l < heap_size && harr[l] > harr[i])
largest = l;
if (r < heap_size && harr[r] > harr[largest])
largest = r;
if (largest != i) {
int t = harr[i];
harr[i] = harr[largest];
harr[largest] = t;
maxHeapify(largest);
}
}
};
// Function to return k'th largest element in a given
// array
int kthSmallest(int[] arr, int n, int k)
{
// Build a heap of first k elements: O(k) time
MaxHeap mh = new MaxHeap(arr, k);
// Process remaining n-k elements. If current
// element is smaller than root, replace root with
// current element
for (int i = k; i < n; i++)
if (arr[i] < mh.getMax())
mh.replaceMax(arr[i]);
// Return root
return mh.getMax();
}
// Driver code
public static void Main(String[] args)
{
int[] arr = { 12, 3, 5, 7, 19 };
int n = arr.Length, k = 4;
GFG gfg = new GFG();
Console.Write("K'th smallest element is "
+ gfg.kthSmallest(arr, n, k));
}
}
// This code is contributed by gauravrajput1
K'th smallest element is 12
方法 5(快速选择)
如果在第一步中使用 QuickSort 作为排序算法,则这是对方法 1 的优化。在 QuickSort 中,我们选择一个枢轴元素,然后将枢轴元素移动到正确的位置,并对周围的数组进行分区。这个想法是,不要做完整的快速排序,而是停在枢轴本身是第 k 个最小元素的点。另外,不要在支点的左侧和右侧都重复,而是根据支点的位置对其中一个重复。这种方法的最坏情况时间复杂度是 O(n 2 ),但它的工作时间平均为 O(n)。
C++
#include
#include
using namespace std;
int partition(int arr[], int l, int r);
// This function returns k'th smallest element in arr[l..r] using
// QuickSort based method. ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCT
int kthSmallest(int arr[], int l, int r, int k)
{
// If k is smaller than number of elements in array
if (k > 0 && k <= r - l + 1) {
// Partition the array around last element and get
// position of pivot element in sorted array
int pos = partition(arr, l, r);
// If position is same as k
if (pos - l == k - 1)
return arr[pos];
if (pos - l > k - 1) // If position is more, recur for left subarray
return kthSmallest(arr, l, pos - 1, k);
// Else recur for right subarray
return kthSmallest(arr, pos + 1, r, k - pos + l - 1);
}
// If k is more than number of elements in array
return INT_MAX;
}
void swap(int* a, int* b)
{
int temp = *a;
*a = *b;
*b = temp;
}
// Standard partition process of QuickSort(). It considers the last
// element as pivot and moves all smaller element to left of it
// and greater elements to right
int partition(int arr[], int l, int r)
{
int x = arr[r], i = l;
for (int j = l; j <= r - 1; j++) {
if (arr[j] <= x) {
swap(&arr[i], &arr[j]);
i++;
}
}
swap(&arr[i], &arr[r]);
return i;
}
// Driver program to test above methods
int main()
{
int arr[] = { 12, 3, 5, 7, 4, 19, 26 };
int n = sizeof(arr) / sizeof(arr[0]), k = 3;
cout << "K'th smallest element is " << kthSmallest(arr, 0, n - 1, k);
return 0;
}
Java
// Java code for kth smallest element in an array
import java.util.Arrays;
import java.util.Collections;
class GFG {
// Standard partition process of QuickSort.
// It considers the last element as pivot
// and moves all smaller element to left of
// it and greater elements to right
public static int partition(Integer[] arr, int l,
int r)
{
int x = arr[r], i = l;
for (int j = l; j <= r - 1; j++) {
if (arr[j] <= x) {
// Swapping arr[i] and arr[j]
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i++;
}
}
// Swapping arr[i] and arr[r]
int temp = arr[i];
arr[i] = arr[r];
arr[r] = temp;
return i;
}
// This function returns k'th smallest element
// in arr[l..r] using QuickSort based method.
// ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCT
public static int kthSmallest(Integer[] arr, int l,
int r, int k)
{
// If k is smaller than number of elements
// in array
if (k > 0 && k <= r - l + 1) {
// Partition the array around last
// element and get position of pivot
// element in sorted array
int pos = partition(arr, l, r);
// If position is same as k
if (pos - l == k - 1)
return arr[pos];
// If position is more, recur for
// left subarray
if (pos - l > k - 1)
return kthSmallest(arr, l, pos - 1, k);
// Else recur for right subarray
return kthSmallest(arr, pos + 1, r, k - pos + l - 1);
}
// If k is more than number of elements
// in array
return Integer.MAX_VALUE;
}
// Driver program to test above methods
public static void main(String[] args)
{
Integer arr[] = new Integer[] { 12, 3, 5, 7, 4, 19, 26 };
int k = 3;
System.out.print("K'th smallest element is " + kthSmallest(arr, 0, arr.length - 1, k));
}
}
// This code is contributed by Chhavi
蟒蛇3
# This function returns k'th smallest element
# in arr[l..r] using QuickSort based method.
# ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCT
import sys
def kthSmallest(arr, l, r, k):
# If k is smaller than number of
# elements in array
if (k > 0 and k <= r - l + 1):
# Partition the array around last
# element and get position of pivot
# element in sorted array
pos = partition(arr, l, r)
# If position is same as k
if (pos - l == k - 1):
return arr[pos]
if (pos - l > k - 1): # If position is more,
# recur for left subarray
return kthSmallest(arr, l, pos - 1, k)
# Else recur for right subarray
return kthSmallest(arr, pos + 1, r,
k - pos + l - 1)
# If k is more than number of
# elements in array
return sys.maxsize
# Standard partition process of QuickSort().
# It considers the last element as pivot and
# moves all smaller element to left of it
# and greater elements to right
def partition(arr, l, r):
x = arr[r]
i = l
for j in range(l, r):
if (arr[j] <= x):
arr[i], arr[j] = arr[j], arr[i]
i += 1
arr[i], arr[r] = arr[r], arr[i]
return i
# Driver Code
if __name__ == "__main__":
arr = [12, 3, 5, 7, 4, 19, 26]
n = len(arr)
k = 3;
print("K'th smallest element is",
kthSmallest(arr, 0, n - 1, k))
# This code is contributed by ita_c
C#
// C# code for kth smallest element
// in an array
using System;
class GFG {
// Standard partition process of QuickSort.
// It considers the last element as pivot
// and moves all smaller element to left of
// it and greater elements to right
public static int partition(int[] arr,
int l, int r)
{
int x = arr[r], i = l;
int temp = 0;
for (int j = l; j <= r - 1; j++) {
if (arr[j] <= x) {
// Swapping arr[i] and arr[j]
temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i++;
}
}
// Swapping arr[i] and arr[r]
temp = arr[i];
arr[i] = arr[r];
arr[r] = temp;
return i;
}
// This function returns k'th smallest
// element in arr[l..r] using QuickSort
// based method. ASSUMPTION: ALL ELEMENTS
// IN ARR[] ARE DISTINCT
public static int kthSmallest(int[] arr, int l,
int r, int k)
{
// If k is smaller than number
// of elements in array
if (k > 0 && k <= r - l + 1) {
// Partition the array around last
// element and get position of pivot
// element in sorted array
int pos = partition(arr, l, r);
// If position is same as k
if (pos - l == k - 1)
return arr[pos];
// If position is more, recur for
// left subarray
if (pos - l > k - 1)
return kthSmallest(arr, l, pos - 1, k);
// Else recur for right subarray
return kthSmallest(arr, pos + 1, r,
k - pos + l - 1);
}
// If k is more than number
// of elements in array
return int.MaxValue;
}
// Driver Code
public static void Main()
{
int[] arr = { 12, 3, 5, 7, 4, 19, 26 };
int k = 3;
Console.Write("K'th smallest element is " + kthSmallest(arr, 0, arr.Length - 1, k));
}
}
// This code is contributed
// by 29AjayKumar
Javascript
K'th smallest element is 5
方法 6(映射 STL)
基于映射的 STL 方法虽然与快速选择和计数排序算法非常相似,但更容易实现。我们可以使用有序映射并用它的频率映射每个元素。正如我们所知,有序映射会以排序的方式存储数据,我们不断增加每个元素的频率,直到它不大于或等于 k,这样我们就可以从一开始就到达第 k 个元素,即第 k 个最小元素。
例如——
数组= {7,0,25,6,16,17,0}
k= 3
现在为了得到第 k 个最大的元素,我们需要将频率相加,直到它大于或等于 3。从上面可以看出,0 + 频率 6 的频率将变为等于 3,所以数组中第三小的数字将为 6。
我们可以使用迭代器遍历地图来实现上述目的。
C++
#include
using namespace std;
int Kth_smallest(map m, int k)
{
int freq = 0;
for (auto it = m.begin(); it != m.end(); it++) {
freq += (it->second); // adding the frequencies of
// each element
if (freq >= k) // if at any point frequency becomes
// greater than or equal to k then
// return that element
{
return it->first;
}
}
return -1; // returning -1 if k>size of the array which
// is an impossible scenario
}
int main()
{
int n = 5;
int k = 2;
vector arr = { 12, 3, 5, 7, 19 };
map m;
for (int i = 0; i < n; i++) {
m[arr[i]] += 1; // mapping every element with it's
// frequency
}
int ans = Kth_smallest(m, k);
cout << "The " << k << "rd smallest element is " << ans
<< endl;
return 0;
}
The 2rd smallest element is 5
还有两个比上面讨论的更好的解决方案:一个解决方案是做quickSelect()的随机版本,另一个解决方案是最坏情况的线性时间算法(见以下帖子)。
未排序数组中的第 K 个最小/最大元素 |组 2(预期线性时间)
未排序数组中的第 K 个最小/最大元素 |设置 3(最坏情况线性时间)
如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程和学生竞争性编程现场课程。