给定一个数组和一个整数K ,找到每个大小为 k 的连续子数组的最大值。
例子 :
Input: arr[] = {1, 2, 3, 1, 4, 5, 2, 3, 6}, K = 3
Output: 3 3 4 5 5 5 6
Explanation:
Maximum of 1, 2, 3 is 3
Maximum of 2, 3, 1 is 3
Maximum of 3, 1, 4 is 4
Maximum of 1, 4, 5 is 5
Maximum of 4, 5, 2 is 5
Maximum of 5, 2, 3 is 5
Maximum of 2, 3, 6 is 6
Input: arr[] = {8, 5, 10, 7, 9, 4, 15, 12, 90, 13}, K = 4
Output: 10 10 10 15 15 90 90
Explanation:
Maximum of first 4 elements is 10, similarly for next 4
elements (i.e from index 1 to 4) is 10, So the sequence
generated is 10 10 10 15 15 90 90
方法一:这是解决上述问题的简单方法。
方法:
这个想法是非常基本的运行嵌套循环,外循环将标记长度为 k 的子数组的起点,内循环将从起始索引运行到索引 + k,从起始索引开始 k 个元素并打印最大元素在这k个元素中。
算法:
- 创建一个嵌套循环,从起始索引到第 n – k 个元素的外循环。内循环将运行 k 次迭代。
- 创建一个变量来存储内部循环遍历的 k 个元素的最大值。
- 找出内循环遍历的 k 个元素的最大值。
- 打印外循环每次迭代中的最大元素
执行:
C++
// C++ Program to find the maximum for
// each and every contiguous subarray of size k.
#include
using namespace std;
// Method to find the maximum for each
// and every contiguous subarray of size k.
void printKMax(int arr[], int n, int k)
{
int j, max;
for (int i = 0; i <= n - k; i++)
{
max = arr[i];
for (j = 1; j < k; j++)
{
if (arr[i + j] > max)
max = arr[i + j];
}
cout << max << " ";
}
}
// Driver code
int main()
{
int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int n = sizeof(arr) / sizeof(arr[0]);
int k = 3;
printKMax(arr, n, k);
return 0;
}
// This code is contributed by rathbhupendra
C
#include
void printKMax(int arr[], int n, int k)
{
int j, max;
for (int i = 0; i <= n - k; i++) {
max = arr[i];
for (j = 1; j < k; j++) {
if (arr[i + j] > max)
max = arr[i + j];
}
printf("%d ", max);
}
}
// Driver Code
int main()
{
int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int n = sizeof(arr) / sizeof(arr[0]);
int k = 3;
printKMax(arr, n, k);
return 0;
}
Java
// Java Program to find the maximum
// for each and every contiguous
// subarray of size k.
public class GFG
{
// Method to find the maximum for
// each and every contiguous
// subarray of size k.
static void printKMax(int arr[], int n, int k)
{
int j, max;
for (int i = 0; i <= n - k; i++) {
max = arr[i];
for (j = 1; j < k; j++) {
if (arr[i + j] > max)
max = arr[i + j];
}
System.out.print(max + " ");
}
}
// Driver code
public static void main(String args[])
{
int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int k = 3;
printKMax(arr, arr.length, k);
}
}
// This code is contributed by Sumit Ghosh
Python3
# Python program to find the maximum for
# each and every contiguous subarray of
# size k
# Method to find the maximum for each
# and every contiguous subarray of s
# of size k
def printMax(arr, n, k):
max = 0
for i in range(n - k + 1):
max = arr[i]
for j in range(1, k):
if arr[i + j] > max:
max = arr[i + j]
print(str(max) + " ", end = "")
# Driver method
if __name__=="__main__":
arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
n = len(arr)
k = 3
printMax(arr, n, k)
# This code is contributed by Shiv Shankar
C#
// C# program to find the maximum for
// each and every contiguous subarray of
// size kusing System;
using System;
class GFG {
// Method to find the maximum for
// each and every contiguous subarray
// of size k.
static void printKMax(int[] arr, int n, int k)
{
int j, max;
for (int i = 0; i <= n - k; i++) {
max = arr[i];
for (j = 1; j < k; j++) {
if (arr[i + j] > max)
max = arr[i + j];
}
Console.Write(max + " ");
}
}
// Driver method
public static void Main()
{
int[] arr = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int k = 3;
printKMax(arr, arr.Length, k);
}
}
// This Code is Contributed by Sam007
PHP
$max)
$max = $arr[$i + $j];
}
printf("%d ", $max);
}
}
// Driver Code
$arr = array(1, 2, 3, 4, 5,
6, 7, 8, 9, 10);
$n = count($arr);
$k = 3;
printKMax($arr, $n, $k);
// This Code is Contributed by anuj_67.
?>
Javascript
C++14
// C++ program to delete a node from AVL Tree
#include
using namespace std;
// An AVL tree node
class Node
{
public:
int key;
Node *left;
Node *right;
int height;
};
// A utility function to get maximum
// of two integers
int max(int a, int b);
// A utility function to get height
// of the tree
int height(Node *N)
{
if (N == NULL)
return 0;
return N->height;
}
// A utility function to get maximum
// of two integers
int max(int a, int b)
{
return (a > b)? a : b;
}
/* Helper function that allocates a
new node with the given key and
NULL left and right pointers. */
Node* newNode(int key)
{
Node* node = new Node();
node->key = key;
node->left = NULL;
node->right = NULL;
node->height = 1; // new node is initially
// added at leaf
return(node);
}
// A utility function to right
// rotate subtree rooted with y
// See the diagram given above.
Node *rightRotate(Node *y)
{
Node *x = y->left;
Node *T2 = x->right;
// Perform rotation
x->right = y;
y->left = T2;
// Update heights
y->height = max(height(y->left),
height(y->right)) + 1;
x->height = max(height(x->left),
height(x->right)) + 1;
// Return new root
return x;
}
// A utility function to left
// rotate subtree rooted with x
// See the diagram given above.
Node *leftRotate(Node *x)
{
Node *y = x->right;
Node *T2 = y->left;
// Perform rotation
y->left = x;
x->right = T2;
// Update heights
x->height = max(height(x->left),
height(x->right)) + 1;
y->height = max(height(y->left),
height(y->right)) + 1;
// Return new root
return y;
}
// Get Balance factor of node N
int getBalance(Node *N)
{
if (N == NULL)
return 0;
return height(N->left) -
height(N->right);
}
Node* insert(Node* node, int key)
{
/* 1. Perform the normal BST rotation */
if (node == NULL)
return(newNode(key));
if (key < node->key)
node->left = insert(node->left, key);
else if (key > node->key)
node->right = insert(node->right, key);
else // Equal keys not allowed
return node;
/* 2. Update height of this ancestor node */
node->height = 1 + max(height(node->left),
height(node->right));
/* 3. Get the balance factor of this
ancestor node to check whether
this node became unbalanced */
int balance = getBalance(node);
// If this node becomes unbalanced,
// then there are 4 cases
// Left Left Case
if (balance > 1 && key < node->left->key)
return rightRotate(node);
// Right Right Case
if (balance < -1 && key > node->right->key)
return leftRotate(node);
// Left Right Case
if (balance > 1 && key > node->left->key)
{
node->left = leftRotate(node->left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node->right->key)
{
node->right = rightRotate(node->right);
return leftRotate(node);
}
/* return the (unchanged) node pointer */
return node;
}
/* Given a non-empty binary search tree,
return the node with minimum key value
found in that tree. Note that the entire
tree does not need to be searched. */
Node * minValueNode(Node* node)
{
Node* current = node;
/* loop down to find the leftmost leaf */
while (current->left != NULL)
current = current->left;
return current;
}
// Recursive function to delete a node
// with given key from subtree with
// given root. It returns root of the
// modified subtree.
Node* deleteNode(Node* root, int key)
{
// STEP 1: PERFORM STANDARD BST DELETE
if (root == NULL)
return root;
// If the key to be deleted is smaller
// than the root's key, then it lies
// in left subtree
if ( key < root->key )
root->left = deleteNode(root->left, key);
// If the key to be deleted is greater
// than the root's key, then it lies
// in right subtree
else if( key > root->key )
root->right = deleteNode(root->right, key);
// if key is same as root's key, then
// This is the node to be deleted
else
{
// node with only one child or no child
if( (root->left == NULL) ||
(root->right == NULL) )
{
Node *temp = root->left ?
root->left :
root->right;
// No child case
if (temp == NULL)
{
temp = root;
root = NULL;
}
else // One child case
*root = *temp; // Copy the contents of
// the non-empty child
free(temp);
}
else
{
// node with two children: Get the inorder
// successor (smallest in the right subtree)
Node* temp = minValueNode(root->right);
// Copy the inorder successor's
// data to this node
root->key = temp->key;
// Delete the inorder successor
root->right = deleteNode(root->right,
temp->key);
}
}
// If the tree had only one node
// then return
if (root == NULL)
return root;
// STEP 2: UPDATE HEIGHT OF THE CURRENT NODE
root->height = 1 + max(height(root->left),
height(root->right));
// STEP 3: GET THE BALANCE FACTOR OF
// THIS NODE (to check whether this
// node became unbalanced)
int balance = getBalance(root);
// If this node becomes unbalanced,
// then there are 4 cases
// Left Left Case
if (balance > 1 &&
getBalance(root->left) >= 0)
return rightRotate(root);
// Left Right Case
if (balance > 1 &&
getBalance(root->left) < 0)
{
root->left = leftRotate(root->left);
return rightRotate(root);
}
// Right Right Case
if (balance < -1 &&
getBalance(root->right) <= 0)
return leftRotate(root);
// Right Left Case
if (balance < -1 &&
getBalance(root->right) > 0)
{
root->right = rightRotate(root->right);
return leftRotate(root);
}
return root;
}
// A utility function to print preorder
// traversal of the tree.
// The function also prints height
// of every node
void preOrder(Node *root)
{
if(root != NULL)
{
cout << root->key << " ";
preOrder(root->left);
preOrder(root->right);
}
}
// Returns maximum value in a given
// Binary Tree
int findMax(Node* root)
{
// Base case
if (root == NULL)
return INT_MIN;
// Return maximum of 3 values:
// 1) Root's data 2) Max in Left Subtree
// 3) Max in right subtree
int res = root->key;
int lres = findMax(root->left);
int rres = findMax(root->right);
if (lres > res)
res = lres;
if (rres > res)
res = rres;
return res;
}
// Method to find the maximum for each
// and every contiguous subarray of size k.
void printKMax(int arr[], int n, int k)
{
int c = 0,l=0;
Node *root = NULL;
//traverse the array ;
for(int i=0; i k)
{
root = deleteNode(root, arr[l++]);
c--;
}
//size of subarray equal to k
if(c == k)
{
cout<
Java
// JAVA program to delete a node from AVL Tree
import java.io.*;
import java.util.*;
class GFG {
static ArrayList findKMaxElement(int[] arr,
int k, int n)
{
// creating the max heap ,to get max element always
PriorityQueue queue = new PriorityQueue<>(
Collections.reverseOrder());
ArrayList res = new ArrayList<>();
int i = 0;
for (; i < k; i++)
queue.add(arr[i]);
// adding the maximum element among first k elements
res.add(queue.peek());
// removing the first element of the array
queue.remove(arr[0]);
// iterarting for the next elements
for (; i < n; i++) {
// adding the new element in the window
queue.add(arr[i]);
// finding & adding the max element in the
// current sliding window
res.add(queue.peek());
// finally removing the first element from front
// end of queue
queue.remove(arr[i - k + 1]);
}
return res;
// this code is Contributed by Pradeep Mondal P
}
// Driver Code
public static void main(String[] args)
{
int arr[] = { 8, 5, 10, 7, 9, 4, 15, 12, 90, 13 };
int k = 4, n = arr.length;
List res = findKMaxElement(arr, k, n);
for (int x : res)
System.out.print(x + " ");
}
}
Javascript
C++
// CPP program for the above approach
#include
using namespace std;
// A Dequeue (Double ended queue) based
// method for printing maximum element of
// all subarrays of size k
void printKMax(int arr[], int n, int k)
{
// Create a Double Ended Queue,
// Qi that will store indexes
// of array elements
// The queue will store indexes
// of useful elements in every
// window and it will
// maintain decreasing order of
// values from front to rear in Qi, i.e.,
// arr[Qi.front[]] to arr[Qi.rear()]
// are sorted in decreasing order
std::deque Qi(k);
/* Process first k (or first window)
elements of array */
int i;
for (i = 0; i < k; ++i)
{
// For every element, the previous
// smaller elements are useless so
// remove them from Qi
while ((!Qi.empty()) && arr[i] >=
arr[Qi.back()])
// Remove from rear
Qi.pop_back();
// Add new element at rear of queue
Qi.push_back(i);
}
// Process rest of the elements,
// i.e., from arr[k] to arr[n-1]
for (; i < n; ++i)
{
// The element at the front of
// the queue is the largest element of
// previous window, so print it
cout << arr[Qi.front()] << " ";
// Remove the elements which
// are out of this window
while ((!Qi.empty()) && Qi.front() <=
i - k)
// Remove from front of queue
Qi.pop_front();
// Remove all elements
// smaller than the currently
// being added element (remove
// useless elements)
while ((!Qi.empty()) && arr[i] >=
arr[Qi.back()])
Qi.pop_back();
// Add current element at the rear of Qi
Qi.push_back(i);
}
// Print the maximum element
// of last window
cout << arr[Qi.front()];
}
// Driver code
int main()
{
int arr[] = { 12, 1, 78, 90, 57, 89, 56 };
int n = sizeof(arr) / sizeof(arr[0]);
int k = 3;
printKMax(arr, n, k);
return 0;
}
Java
// Java Program to find the maximum for
// each and every contiguous subarray of size k.
import java.util.Deque;
import java.util.LinkedList;
public class SlidingWindow
{
// A Dequeue (Double ended queue)
// based method for printing
// maximum element of
// all subarrays of size k
static void printMax(int arr[], int n, int k)
{
// Create a Double Ended Queue, Qi
// that will store indexes of array elements
// The queue will store indexes of
// useful elements in every window and it will
// maintain decreasing order of values
// from front to rear in Qi, i.e.,
// arr[Qi.front[]] to arr[Qi.rear()]
// are sorted in decreasing order
Deque Qi = new LinkedList();
/* Process first k (or first window)
elements of array */
int i;
for (i = 0; i < k; ++i)
{
// For every element, the previous
// smaller elements are useless so
// remove them from Qi
while (!Qi.isEmpty() && arr[i] >=
arr[Qi.peekLast()])
// Remove from rear
Qi.removeLast();
// Add new element at rear of queue
Qi.addLast(i);
}
// Process rest of the elements,
// i.e., from arr[k] to arr[n-1]
for (; i < n; ++i)
{
// The element at the front of the
// queue is the largest element of
// previous window, so print it
System.out.print(arr[Qi.peek()] + " ");
// Remove the elements which
// are out of this window
while ((!Qi.isEmpty()) && Qi.peek() <=
i - k)
Qi.removeFirst();
// Remove all elements smaller
// than the currently
// being added element (remove
// useless elements)
while ((!Qi.isEmpty()) && arr[i] >=
arr[Qi.peekLast()])
Qi.removeLast();
// Add current element at the rear of Qi
Qi.addLast(i);
}
// Print the maximum element of last window
System.out.print(arr[Qi.peek()]);
}
// Driver code
public static void main(String[] args)
{
int arr[] = { 12, 1, 78, 90, 57, 89, 56 };
int k = 3;
printMax(arr, arr.length, k);
}
}
// This code is contributed by Sumit Ghosh
Python3
# Python program to find the maximum for
# each and every contiguous subarray of
# size k
from collections import deque
# A Deque (Double ended queue) based
# method for printing maximum element
# of all subarrays of size k
def printMax(arr, n, k):
""" Create a Double Ended Queue, Qi that
will store indexes of array elements.
The queue will store indexes of useful
elements in every window and it will
maintain decreasing order of values from
front to rear in Qi, i.e., arr[Qi.front[]]
to arr[Qi.rear()] are sorted in decreasing
order"""
Qi = deque()
# Process first k (or first window)
# elements of array
for i in range(k):
# For every element, the previous
# smaller elements are useless
# so remove them from Qi
while Qi and arr[i] >= arr[Qi[-1]] :
Qi.pop()
# Add new element at rear of queue
Qi.append(i);
# Process rest of the elements, i.e.
# from arr[k] to arr[n-1]
for i in range(k, n):
# The element at the front of the
# queue is the largest element of
# previous window, so print it
print(str(arr[Qi[0]]) + " ", end = "")
# Remove the elements which are
# out of this window
while Qi and Qi[0] <= i-k:
# remove from front of deque
Qi.popleft()
# Remove all elements smaller than
# the currently being added element
# (Remove useless elements)
while Qi and arr[i] >= arr[Qi[-1]] :
Qi.pop()
# Add current element at the rear of Qi
Qi.append(i)
# Print the maximum element of last window
print(str(arr[Qi[0]]))
# Driver code
if __name__=="__main__":
arr = [12, 1, 78, 90, 57, 89, 56]
k = 3
printMax(arr, len(arr), k)
# This code is contributed by Shiv Shankar
C#
// C# Program to find the maximum for each
// and every contiguous subarray of size k.
using System;
using System.Collections.Generic;
public class SlidingWindow
{
// A Dequeue (Double ended queue) based
// method for printing maximum element of
// all subarrays of size k
static void printMax(int []arr, int n, int k)
{
// Create a Double Ended Queue, Qi that
// will store indexes of array elements
// The queue will store indexes of useful
// elements in every window and it will
// maintain decreasing order of values
// from front to rear in Qi, i.e.,
// arr[Qi.front[]] to arr[Qi.rear()]
// are sorted in decreasing order
List Qi = new List();
/* Process first k (or first window)
elements of array */
int i;
for (i = 0; i < k; ++i) {
// For every element, the previous
// smaller elements are useless so
// remove them from Qi
while (Qi.Count != 0 && arr[i] >=
arr[Qi[Qi.Count-1]])
// Remove from rear
Qi.RemoveAt(Qi.Count-1);
// Add new element at rear of queue
Qi.Insert(Qi.Count, i);
}
// Process rest of the elements,
// i.e., from arr[k] to arr[n-1]
for (; i < n; ++i)
{
// The element at the front of
// the queue is the largest element of
// previous window, so print it
Console.Write(arr[Qi[0]] + " ");
// Remove the elements which are
// out of this window
while ((Qi.Count != 0) && Qi[0] <= i - k)
Qi.RemoveAt(0);
// Remove all elements smaller
// than the currently
// being added element (remove
// useless elements)
while ((Qi.Count != 0) && arr[i] >=
arr[Qi[Qi.Count - 1]])
Qi.RemoveAt(Qi.Count - 1);
// Add current element at the rear of Qi
Qi.Insert(Qi.Count, i);
}
// Print the maximum element of last window
Console.Write(arr[Qi[0]]);
}
// Driver code
public static void Main(String[] args)
{
int []arr = { 12, 1, 78, 90, 57, 89, 56 };
int k = 3;
printMax(arr, arr.Length, k);
}
}
// This code has been contributed by 29AjayKumar
C++
#include
using namespace std;
struct node{
int data;
int maximum;
};
// it is a modification in the way of implementation of queue using two stack
void insert(stack &s2 , int val)
{
//inserting the element in s2
node other;
other.data=val;
if(s2.empty()) other.maximum=val;
else
{
node front=s2.top();
//updating maximum in that stack push it
other.maximum=max(val,front.maximum);
}
s2.push(other);
return;
}
void delet(stack &s1 ,stack &s2 )
{
//if s1 is not empty directly pop
//else we have to push all element from s2 and thatn pop from s1
//while pushing from s2 to s1 update maximum variable in s1
if(s1.size()) s1.pop();
else
{
while(!s2.empty())
{
node val=s2.top();
insert(s1,val.data);
s2.pop();
}
s1.pop();
}
}
int get_max(stack &s1 ,stack &s2 )
{
// the maximum of both stack will be the maximum of overall window
int ans=-1;
if(s1.size()) ans=max(ans,s1.top().maximum);
if(s2.size()) ans=max(ans,s2.top().maximum);
return ans;
}
vector slidingMaximum(int a[], int b,int n) {
//s2 for push
//s1 for pop
vectorans;
stacks1,s2;
//shifting all value except the last one if first window
for(int i=0;i=0) delet(s1,s2);
//adding the new element to the window as the window is shift by one
insert(s2,a[i+b-1]);
ans.push_back(get_max(s1,s2));
}
return ans;
}
int main()
{
int arr[] = { 8, 5, 10, 7, 9, 4, 15, 12, 90, 13 };
int n = sizeof(arr) / sizeof(arr[0]);
int k = 4;
vector ans=slidingMaximum(arr,k,n);
for(auto x:ans) cout<
3 4 5 6 7 8 9 10
复杂度分析:
- 时间复杂度: O(N * K)。
对于外循环的每次迭代,外循环运行 n-k+1 次,内循环运行 k 次。所以时间复杂度是 O((n-k+1)*k) 也可以写成O(N * K) 。 - 空间复杂度: O(1)。
不需要额外的空间。
方法 2:该方法使用自平衡 BST 来解决给定的问题。
方法:
为了在子数组的 k 个元素中找到最大值,前面的方法使用遍历元素的循环。为了减少该时间,我们的想法是使用 AVL 树,该树返回 log n 时间内的最大元素。因此,遍历数组并在 BST 中保留 k 个元素并在每次迭代中打印最大值。 AVL 树是一种合适的数据结构,因为查找、插入和删除在平均和最坏情况下都需要 O(log n) 时间,其中 n 是操作之前树中的节点数。
算法:
- 创建一个自平衡 BST(AVL 树)来存储和查找最大元素。
- 从头到尾遍历数组。
- 在 AVL 树中插入元素。
- 如果循环计数器大于或等于 k 则从 BST 中删除第 ik 个元素
- 打印 BST 的最大元素。
执行:
C++14
// C++ program to delete a node from AVL Tree
#include
using namespace std;
// An AVL tree node
class Node
{
public:
int key;
Node *left;
Node *right;
int height;
};
// A utility function to get maximum
// of two integers
int max(int a, int b);
// A utility function to get height
// of the tree
int height(Node *N)
{
if (N == NULL)
return 0;
return N->height;
}
// A utility function to get maximum
// of two integers
int max(int a, int b)
{
return (a > b)? a : b;
}
/* Helper function that allocates a
new node with the given key and
NULL left and right pointers. */
Node* newNode(int key)
{
Node* node = new Node();
node->key = key;
node->left = NULL;
node->right = NULL;
node->height = 1; // new node is initially
// added at leaf
return(node);
}
// A utility function to right
// rotate subtree rooted with y
// See the diagram given above.
Node *rightRotate(Node *y)
{
Node *x = y->left;
Node *T2 = x->right;
// Perform rotation
x->right = y;
y->left = T2;
// Update heights
y->height = max(height(y->left),
height(y->right)) + 1;
x->height = max(height(x->left),
height(x->right)) + 1;
// Return new root
return x;
}
// A utility function to left
// rotate subtree rooted with x
// See the diagram given above.
Node *leftRotate(Node *x)
{
Node *y = x->right;
Node *T2 = y->left;
// Perform rotation
y->left = x;
x->right = T2;
// Update heights
x->height = max(height(x->left),
height(x->right)) + 1;
y->height = max(height(y->left),
height(y->right)) + 1;
// Return new root
return y;
}
// Get Balance factor of node N
int getBalance(Node *N)
{
if (N == NULL)
return 0;
return height(N->left) -
height(N->right);
}
Node* insert(Node* node, int key)
{
/* 1. Perform the normal BST rotation */
if (node == NULL)
return(newNode(key));
if (key < node->key)
node->left = insert(node->left, key);
else if (key > node->key)
node->right = insert(node->right, key);
else // Equal keys not allowed
return node;
/* 2. Update height of this ancestor node */
node->height = 1 + max(height(node->left),
height(node->right));
/* 3. Get the balance factor of this
ancestor node to check whether
this node became unbalanced */
int balance = getBalance(node);
// If this node becomes unbalanced,
// then there are 4 cases
// Left Left Case
if (balance > 1 && key < node->left->key)
return rightRotate(node);
// Right Right Case
if (balance < -1 && key > node->right->key)
return leftRotate(node);
// Left Right Case
if (balance > 1 && key > node->left->key)
{
node->left = leftRotate(node->left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node->right->key)
{
node->right = rightRotate(node->right);
return leftRotate(node);
}
/* return the (unchanged) node pointer */
return node;
}
/* Given a non-empty binary search tree,
return the node with minimum key value
found in that tree. Note that the entire
tree does not need to be searched. */
Node * minValueNode(Node* node)
{
Node* current = node;
/* loop down to find the leftmost leaf */
while (current->left != NULL)
current = current->left;
return current;
}
// Recursive function to delete a node
// with given key from subtree with
// given root. It returns root of the
// modified subtree.
Node* deleteNode(Node* root, int key)
{
// STEP 1: PERFORM STANDARD BST DELETE
if (root == NULL)
return root;
// If the key to be deleted is smaller
// than the root's key, then it lies
// in left subtree
if ( key < root->key )
root->left = deleteNode(root->left, key);
// If the key to be deleted is greater
// than the root's key, then it lies
// in right subtree
else if( key > root->key )
root->right = deleteNode(root->right, key);
// if key is same as root's key, then
// This is the node to be deleted
else
{
// node with only one child or no child
if( (root->left == NULL) ||
(root->right == NULL) )
{
Node *temp = root->left ?
root->left :
root->right;
// No child case
if (temp == NULL)
{
temp = root;
root = NULL;
}
else // One child case
*root = *temp; // Copy the contents of
// the non-empty child
free(temp);
}
else
{
// node with two children: Get the inorder
// successor (smallest in the right subtree)
Node* temp = minValueNode(root->right);
// Copy the inorder successor's
// data to this node
root->key = temp->key;
// Delete the inorder successor
root->right = deleteNode(root->right,
temp->key);
}
}
// If the tree had only one node
// then return
if (root == NULL)
return root;
// STEP 2: UPDATE HEIGHT OF THE CURRENT NODE
root->height = 1 + max(height(root->left),
height(root->right));
// STEP 3: GET THE BALANCE FACTOR OF
// THIS NODE (to check whether this
// node became unbalanced)
int balance = getBalance(root);
// If this node becomes unbalanced,
// then there are 4 cases
// Left Left Case
if (balance > 1 &&
getBalance(root->left) >= 0)
return rightRotate(root);
// Left Right Case
if (balance > 1 &&
getBalance(root->left) < 0)
{
root->left = leftRotate(root->left);
return rightRotate(root);
}
// Right Right Case
if (balance < -1 &&
getBalance(root->right) <= 0)
return leftRotate(root);
// Right Left Case
if (balance < -1 &&
getBalance(root->right) > 0)
{
root->right = rightRotate(root->right);
return leftRotate(root);
}
return root;
}
// A utility function to print preorder
// traversal of the tree.
// The function also prints height
// of every node
void preOrder(Node *root)
{
if(root != NULL)
{
cout << root->key << " ";
preOrder(root->left);
preOrder(root->right);
}
}
// Returns maximum value in a given
// Binary Tree
int findMax(Node* root)
{
// Base case
if (root == NULL)
return INT_MIN;
// Return maximum of 3 values:
// 1) Root's data 2) Max in Left Subtree
// 3) Max in right subtree
int res = root->key;
int lres = findMax(root->left);
int rres = findMax(root->right);
if (lres > res)
res = lres;
if (rres > res)
res = rres;
return res;
}
// Method to find the maximum for each
// and every contiguous subarray of size k.
void printKMax(int arr[], int n, int k)
{
int c = 0,l=0;
Node *root = NULL;
//traverse the array ;
for(int i=0; i k)
{
root = deleteNode(root, arr[l++]);
c--;
}
//size of subarray equal to k
if(c == k)
{
cout<
Java
// JAVA program to delete a node from AVL Tree
import java.io.*;
import java.util.*;
class GFG {
static ArrayList findKMaxElement(int[] arr,
int k, int n)
{
// creating the max heap ,to get max element always
PriorityQueue queue = new PriorityQueue<>(
Collections.reverseOrder());
ArrayList res = new ArrayList<>();
int i = 0;
for (; i < k; i++)
queue.add(arr[i]);
// adding the maximum element among first k elements
res.add(queue.peek());
// removing the first element of the array
queue.remove(arr[0]);
// iterarting for the next elements
for (; i < n; i++) {
// adding the new element in the window
queue.add(arr[i]);
// finding & adding the max element in the
// current sliding window
res.add(queue.peek());
// finally removing the first element from front
// end of queue
queue.remove(arr[i - k + 1]);
}
return res;
// this code is Contributed by Pradeep Mondal P
}
// Driver Code
public static void main(String[] args)
{
int arr[] = { 8, 5, 10, 7, 9, 4, 15, 12, 90, 13 };
int k = 4, n = arr.length;
List res = findKMaxElement(arr, k, n);
for (int x : res)
System.out.print(x + " ");
}
}
Javascript
10 10 10 15 15 90 90
复杂度分析:
- 时间复杂度: O(N * Log k) 。
在 AVL 树中插入、删除和搜索需要 log k 时间。所以总的时间复杂度是 O(N * log k) - 空间复杂度: O(k)。
在 BST 中存储 k 个元素所需的空间是 O(k)。
方法三:该方法使用Deque解决上述问题
方法:
创建一个容量为 k 的 Deque, Qi ,它只存储 k 个元素的当前窗口的有用元素。如果一个元素在当前窗口中并且比当前窗口中它右侧的所有其他元素大,则该元素很有用。将所有数组元素一一处理并维护Qi以包含当前窗口的有用元素,这些有用元素按排序顺序维护。在齐前的元素是在齐的后部/背部最大和元件是最小的当前窗口的。感谢 Aashish 提出这种方法。
上述方法的试运行:
算法:
- 创建一个双端队列来存储 k 个元素。
- 运行一个循环并在双端队列中插入前 k 个元素。在插入元素之前,检查队列后面的元素是否小于当前元素,如果是,则将元素从双端队列的后面移除,直到双端队列中剩下的所有元素都大于当前元素。然后在双端队列的后面插入当前元素。
- 现在,从 k 到数组末尾运行一个循环。
- 打印双端队列的前端元素。
- 如果元素在当前窗口之外,则从队列的前面移除元素。
- 在双端队列中插入下一个元素。在插入元素之前,检查队列后面的元素是否小于当前元素,如果是,则将元素从双端队列的后面移除,直到双端队列中剩下的所有元素都大于当前元素。然后在双端队列的后面插入当前元素。
- 打印最后一个窗口的最大元素。
执行:
C++
// CPP program for the above approach
#include
using namespace std;
// A Dequeue (Double ended queue) based
// method for printing maximum element of
// all subarrays of size k
void printKMax(int arr[], int n, int k)
{
// Create a Double Ended Queue,
// Qi that will store indexes
// of array elements
// The queue will store indexes
// of useful elements in every
// window and it will
// maintain decreasing order of
// values from front to rear in Qi, i.e.,
// arr[Qi.front[]] to arr[Qi.rear()]
// are sorted in decreasing order
std::deque Qi(k);
/* Process first k (or first window)
elements of array */
int i;
for (i = 0; i < k; ++i)
{
// For every element, the previous
// smaller elements are useless so
// remove them from Qi
while ((!Qi.empty()) && arr[i] >=
arr[Qi.back()])
// Remove from rear
Qi.pop_back();
// Add new element at rear of queue
Qi.push_back(i);
}
// Process rest of the elements,
// i.e., from arr[k] to arr[n-1]
for (; i < n; ++i)
{
// The element at the front of
// the queue is the largest element of
// previous window, so print it
cout << arr[Qi.front()] << " ";
// Remove the elements which
// are out of this window
while ((!Qi.empty()) && Qi.front() <=
i - k)
// Remove from front of queue
Qi.pop_front();
// Remove all elements
// smaller than the currently
// being added element (remove
// useless elements)
while ((!Qi.empty()) && arr[i] >=
arr[Qi.back()])
Qi.pop_back();
// Add current element at the rear of Qi
Qi.push_back(i);
}
// Print the maximum element
// of last window
cout << arr[Qi.front()];
}
// Driver code
int main()
{
int arr[] = { 12, 1, 78, 90, 57, 89, 56 };
int n = sizeof(arr) / sizeof(arr[0]);
int k = 3;
printKMax(arr, n, k);
return 0;
}
Java
// Java Program to find the maximum for
// each and every contiguous subarray of size k.
import java.util.Deque;
import java.util.LinkedList;
public class SlidingWindow
{
// A Dequeue (Double ended queue)
// based method for printing
// maximum element of
// all subarrays of size k
static void printMax(int arr[], int n, int k)
{
// Create a Double Ended Queue, Qi
// that will store indexes of array elements
// The queue will store indexes of
// useful elements in every window and it will
// maintain decreasing order of values
// from front to rear in Qi, i.e.,
// arr[Qi.front[]] to arr[Qi.rear()]
// are sorted in decreasing order
Deque Qi = new LinkedList();
/* Process first k (or first window)
elements of array */
int i;
for (i = 0; i < k; ++i)
{
// For every element, the previous
// smaller elements are useless so
// remove them from Qi
while (!Qi.isEmpty() && arr[i] >=
arr[Qi.peekLast()])
// Remove from rear
Qi.removeLast();
// Add new element at rear of queue
Qi.addLast(i);
}
// Process rest of the elements,
// i.e., from arr[k] to arr[n-1]
for (; i < n; ++i)
{
// The element at the front of the
// queue is the largest element of
// previous window, so print it
System.out.print(arr[Qi.peek()] + " ");
// Remove the elements which
// are out of this window
while ((!Qi.isEmpty()) && Qi.peek() <=
i - k)
Qi.removeFirst();
// Remove all elements smaller
// than the currently
// being added element (remove
// useless elements)
while ((!Qi.isEmpty()) && arr[i] >=
arr[Qi.peekLast()])
Qi.removeLast();
// Add current element at the rear of Qi
Qi.addLast(i);
}
// Print the maximum element of last window
System.out.print(arr[Qi.peek()]);
}
// Driver code
public static void main(String[] args)
{
int arr[] = { 12, 1, 78, 90, 57, 89, 56 };
int k = 3;
printMax(arr, arr.length, k);
}
}
// This code is contributed by Sumit Ghosh
蟒蛇3
# Python program to find the maximum for
# each and every contiguous subarray of
# size k
from collections import deque
# A Deque (Double ended queue) based
# method for printing maximum element
# of all subarrays of size k
def printMax(arr, n, k):
""" Create a Double Ended Queue, Qi that
will store indexes of array elements.
The queue will store indexes of useful
elements in every window and it will
maintain decreasing order of values from
front to rear in Qi, i.e., arr[Qi.front[]]
to arr[Qi.rear()] are sorted in decreasing
order"""
Qi = deque()
# Process first k (or first window)
# elements of array
for i in range(k):
# For every element, the previous
# smaller elements are useless
# so remove them from Qi
while Qi and arr[i] >= arr[Qi[-1]] :
Qi.pop()
# Add new element at rear of queue
Qi.append(i);
# Process rest of the elements, i.e.
# from arr[k] to arr[n-1]
for i in range(k, n):
# The element at the front of the
# queue is the largest element of
# previous window, so print it
print(str(arr[Qi[0]]) + " ", end = "")
# Remove the elements which are
# out of this window
while Qi and Qi[0] <= i-k:
# remove from front of deque
Qi.popleft()
# Remove all elements smaller than
# the currently being added element
# (Remove useless elements)
while Qi and arr[i] >= arr[Qi[-1]] :
Qi.pop()
# Add current element at the rear of Qi
Qi.append(i)
# Print the maximum element of last window
print(str(arr[Qi[0]]))
# Driver code
if __name__=="__main__":
arr = [12, 1, 78, 90, 57, 89, 56]
k = 3
printMax(arr, len(arr), k)
# This code is contributed by Shiv Shankar
C#
// C# Program to find the maximum for each
// and every contiguous subarray of size k.
using System;
using System.Collections.Generic;
public class SlidingWindow
{
// A Dequeue (Double ended queue) based
// method for printing maximum element of
// all subarrays of size k
static void printMax(int []arr, int n, int k)
{
// Create a Double Ended Queue, Qi that
// will store indexes of array elements
// The queue will store indexes of useful
// elements in every window and it will
// maintain decreasing order of values
// from front to rear in Qi, i.e.,
// arr[Qi.front[]] to arr[Qi.rear()]
// are sorted in decreasing order
List Qi = new List();
/* Process first k (or first window)
elements of array */
int i;
for (i = 0; i < k; ++i) {
// For every element, the previous
// smaller elements are useless so
// remove them from Qi
while (Qi.Count != 0 && arr[i] >=
arr[Qi[Qi.Count-1]])
// Remove from rear
Qi.RemoveAt(Qi.Count-1);
// Add new element at rear of queue
Qi.Insert(Qi.Count, i);
}
// Process rest of the elements,
// i.e., from arr[k] to arr[n-1]
for (; i < n; ++i)
{
// The element at the front of
// the queue is the largest element of
// previous window, so print it
Console.Write(arr[Qi[0]] + " ");
// Remove the elements which are
// out of this window
while ((Qi.Count != 0) && Qi[0] <= i - k)
Qi.RemoveAt(0);
// Remove all elements smaller
// than the currently
// being added element (remove
// useless elements)
while ((Qi.Count != 0) && arr[i] >=
arr[Qi[Qi.Count - 1]])
Qi.RemoveAt(Qi.Count - 1);
// Add current element at the rear of Qi
Qi.Insert(Qi.Count, i);
}
// Print the maximum element of last window
Console.Write(arr[Qi[0]]);
}
// Driver code
public static void Main(String[] args)
{
int []arr = { 12, 1, 78, 90, 57, 89, 56 };
int k = 3;
printMax(arr, arr.Length, k);
}
}
// This code has been contributed by 29AjayKumar
78 90 90 90 89
复杂度分析:
- 时间复杂度: O(n)。
乍一看似乎不止 O(n)。可以观察到,数组的每个元素最多被添加和删除一次。所以总共有 2n 次操作。 - 辅助空间: O(k)。
存储在出队中的元素占用 O(k) 空间。
下面是这个问题的扩展:
大小为 k 的所有子数组的最小和最大元素的总和。
方法四:这个方法是在两个栈的队列实现中修改:
算法 :
- 在压入元素时,我们不断地压入堆栈 2。堆栈 2 的最大值将始终是堆栈 2 顶部元素的最大值。
- 出栈时,总是从栈 1 弹出,如果栈 1 为空,则将栈 2 的每个元素都压入栈 1 并更新最大值
- 栈的队列实现遵循以上两步
- 现在要找到整个队列的最大值(与两个堆栈相同),我们将取两个堆栈最大值的顶部元素;因此这是整个队列的最大值。
- 现在,这种技术可用于滑动窗口并获得最大值。
- 滑动窗口按 1 个索引删除最后一个,插入新的,然后取两个堆栈的最大值
执行
C++
#include
using namespace std;
struct node{
int data;
int maximum;
};
// it is a modification in the way of implementation of queue using two stack
void insert(stack &s2 , int val)
{
//inserting the element in s2
node other;
other.data=val;
if(s2.empty()) other.maximum=val;
else
{
node front=s2.top();
//updating maximum in that stack push it
other.maximum=max(val,front.maximum);
}
s2.push(other);
return;
}
void delet(stack &s1 ,stack &s2 )
{
//if s1 is not empty directly pop
//else we have to push all element from s2 and thatn pop from s1
//while pushing from s2 to s1 update maximum variable in s1
if(s1.size()) s1.pop();
else
{
while(!s2.empty())
{
node val=s2.top();
insert(s1,val.data);
s2.pop();
}
s1.pop();
}
}
int get_max(stack &s1 ,stack &s2 )
{
// the maximum of both stack will be the maximum of overall window
int ans=-1;
if(s1.size()) ans=max(ans,s1.top().maximum);
if(s2.size()) ans=max(ans,s2.top().maximum);
return ans;
}
vector slidingMaximum(int a[], int b,int n) {
//s2 for push
//s1 for pop
vectorans;
stacks1,s2;
//shifting all value except the last one if first window
for(int i=0;i=0) delet(s1,s2);
//adding the new element to the window as the window is shift by one
insert(s2,a[i+b-1]);
ans.push_back(get_max(s1,s2));
}
return ans;
}
int main()
{
int arr[] = { 8, 5, 10, 7, 9, 4, 15, 12, 90, 13 };
int n = sizeof(arr) / sizeof(arr[0]);
int k = 4;
vector ans=slidingMaximum(arr,k,n);
for(auto x:ans) cout<
78 90 90 90 89
复杂度分析:
- 时间复杂度:O(N):这是因为每个元素只有两种类型的推送和弹出;因此时间复杂度是线性的。
- 空间复杂度:O(K):这是因为在任何时刻,两个堆栈的堆栈大小总和将恰好等于 K,因为每次我们只弹出一个元素并压入一个元素。
方法五:该方法使用Max-Heap来解决上述问题。
方法:
在上述方法中,其中之一是使用 AVL 树。这种方法与那种方法非常相似。不同之处在于,在这种方法中将使用 Max-Heap,而不是使用 AVL 树。当前窗口的元素将存储在 Max-Heap 中,并且在每次迭代中将打印最大元素或根。
最大堆是一种合适的数据结构,因为它提供了恒定时间检索和其中最小和最大元素的对数时间删除,即找到最大元素需要恒定时间,插入和删除需要 log n 时间。
算法:
- 选取前 k 个元素并创建大小为 k 的最大堆。
- 执行 heapify 并打印根元素。
- 存储数组中的下一个和最后一个元素
- 运行从 k – 1 到 n 的循环
- 用进入窗口的新元素替换离开窗口的元素的值。
- 执行堆化。
- 打印堆的根。
如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程和学生竞争性编程现场课程。