打印给定二叉树节点的祖先而不递归
给定一个二叉树和一个键,编写一个函数来打印给定二叉树中键的所有祖先。
例如,考虑以下二叉树
1
/ \
2 3
/ \ / \
4 5 6 7
/ \ /
8 9 10
以下是上述树中的不同输入键及其祖先
Input Key List of Ancestors
-------------------------
1
2 1
3 1
4 2 1
5 2 1
6 3 1
7 3 1
8 4 2 1
9 5 2 1
10 7 3 1
此处讨论此问题的递归解决方案。
很明显,我们需要使用基于堆栈的二叉树迭代遍历。这个想法是当我们到达具有给定键的节点时,将所有祖先都放在堆栈中。一旦我们到达键,我们所要做的就是打印堆栈的内容。
当我们到达给定节点时,如何获取堆栈中的所有祖先?我们可以通过后序方式遍历所有节点。如果我们仔细观察递归后序遍历,我们可以很容易地观察到,当为一个节点调用递归函数时,递归调用堆栈包含该节点的祖先。所以想法是进行迭代后序遍历并在我们到达所需节点时停止遍历。
以下是上述方法的实现。
C
// C program to print all ancestors of a given key
#include
#include
// Maximum stack size
#define MAX_SIZE 100
// Structure for a tree node
struct Node
{
int data;
struct Node *left, *right;
};
// Structure for Stack
struct Stack
{
int size;
int top;
struct Node* *array;
};
// A utility function to create a new tree node
struct Node* newNode(int data)
{
struct Node* node = (struct Node*) malloc(sizeof(struct Node));
node->data = data;
node->left = node->right = NULL;
return node;
}
// A utility function to create a stack of given size
struct Stack* createStack(int size)
{
struct Stack* stack = (struct Stack*) malloc(sizeof(struct Stack));
stack->size = size;
stack->top = -1;
stack->array = (struct Node**) malloc(stack->size * sizeof(struct Node*));
return stack;
}
// BASIC OPERATIONS OF STACK
int isFull(struct Stack* stack)
{
return ((stack->top + 1) == stack->size);
}
int isEmpty(struct Stack* stack)
{
return stack->top == -1;
}
void push(struct Stack* stack, struct Node* node)
{
if (isFull(stack))
return;
stack->array[++stack->top] = node;
}
struct Node* pop(struct Stack* stack)
{
if (isEmpty(stack))
return NULL;
return stack->array[stack->top--];
}
struct Node* peek(struct Stack* stack)
{
if (isEmpty(stack))
return NULL;
return stack->array[stack->top];
}
// Iterative Function to print all ancestors of a given key
void printAncestors(struct Node *root, int key)
{
if (root == NULL) return;
// Create a stack to hold ancestors
struct Stack* stack = createStack(MAX_SIZE);
// Traverse the complete tree in postorder way till we find the key
while (1)
{
// Traverse the left side. While traversing, push the nodes into
// the stack so that their right subtrees can be traversed later
while (root && root->data != key)
{
push(stack, root); // push current node
root = root->left; // move to next node
}
// If the node whose ancestors are to be printed is found,
// then break the while loop.
if (root && root->data == key)
break;
// Check if right sub-tree exists for the node at top
// If not then pop that node because we don't need this
// node any more.
if (peek(stack)->right == NULL)
{
root = pop(stack);
// If the popped node is right child of top, then remove the top
// as well. Left child of the top must have processed before.
// Consider the following tree for example and key = 3. If we
// remove the following loop, the program will go in an
// infinite loop after reaching 5.
// 1
// / \
// 2 3
// \
// 4
// \
// 5
while (!isEmpty(stack) && peek(stack)->right == root)
root = pop(stack);
}
// if stack is not empty then simply set the root as right child
// of top and start traversing right sub-tree.
root = isEmpty(stack)? NULL: peek(stack)->right;
}
// If stack is not empty, print contents of stack
// Here assumption is that the key is there in tree
while (!isEmpty(stack))
printf("%d ", pop(stack)->data);
}
// Driver program to test above functions
int main()
{
// Let us construct a binary tree
struct Node* root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
root->right->left = newNode(6);
root->right->right = newNode(7);
root->left->left->left = newNode(8);
root->left->right->right = newNode(9);
root->right->right->left = newNode(10);
printf("Following are all keys and their ancestors\n");
for (int key = 1; key <= 10; key++)
{
printf("%d: ", key);
printAncestors(root, key);
printf("\n");
}
getchar();
return 0;
}
C++
// C++ program to print all ancestors of a given key
#include
using namespace std;
// Structure for a tree node
struct Node
{
int data;
struct Node *left, *right;
};
// A utility function to create a new tree node
struct Node* newNode(int data)
{
struct Node* node = (struct Node*) malloc(sizeof(struct Node));
node->data = data;
node->left = node->right = NULL;
return node;
}
// Iterative Function to print all ancestors of a given key
void printAncestors(struct Node *root, int key)
{
if (root == NULL) return;
// Create a stack to hold ancestors
stack st;
// Traverse the complete tree in postorder way till we find the key
while (1)
{
// Traverse the left side. While traversing, push the nodes into
// the stack so that their right subtrees can be traversed later
while (root && root->data != key)
{
st.push(root); // push current node
root = root->left; // move to next node
}
// If the node whose ancestors are to be printed is found,
// then break the while loop.
if (root && root->data == key)
break;
// Check if right sub-tree exists for the node at top
// If not then pop that node because we don't need this
// node any more.
if (st.top()->right == NULL)
{
root = st.top();
st.pop();
// If the popped node is right child of top, then remove the top
// as well. Left child of the top must have processed before.
while (!st.empty() && st.top()->right == root)
{root = st.top();
st.pop();
}
}
// if stack is not empty then simply set the root as right child
// of top and start traversing right sub-tree.
root = st.empty()? NULL: st.top()->right;
}
// If stack is not empty, print contents of stack
// Here assumption is that the key is there in tree
while (!st.empty())
{
cout<data<<" ";
st.pop();
}
}
// Driver program to test above functions
int main()
{
// Let us construct a binary tree
struct Node* root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
root->right->left = newNode(6);
root->right->right = newNode(7);
root->left->left->left = newNode(8);
root->left->right->right = newNode(9);
root->right->right->left = newNode(10);
cout<<"Following are all keys and their ancestors"<
Java
// Java program to print all ancestors of a given key
import java.util.Stack;
public class GFG
{
// Class for a tree node
static class Node
{
int data;
Node left,right;
// constructor to create Node
// left and right are by default null
Node(int data)
{
this.data = data;
}
}
// Iterative Function to print all ancestors of a given key
static void printAncestors(Node root,int key)
{
if(root == null)
return;
// Create a stack to hold ancestors
Stack st = new Stack<>();
// Traverse the complete tree in postorder way till we find the key
while(true)
{
// Traverse the left side. While traversing, push the nodes into
// the stack so that their right subtrees can be traversed later
while(root != null && root.data != key)
{
st.push(root); // push current node
root = root.left; // move to next node
}
// If the node whose ancestors are to be printed is found,
// then break the while loop.
if(root != null && root.data == key)
break;
// Check if right sub-tree exists for the node at top
// If not then pop that node because we don't need this
// node any more.
if(st.peek().right == null)
{
root =st.peek();
st.pop();
// If the popped node is right child of top, then remove the top
// as well. Left child of the top must have processed before.
while( st.empty() == false && st.peek().right == root)
{
root = st.peek();
st.pop();
}
}
// if stack is not empty then simply set the root as right child
// of top and start traversing right sub-tree.
root = st.empty() ? null : st.peek().right;
}
// If stack is not empty, print contents of stack
// Here assumption is that the key is there in tree
while( !st.empty() )
{
System.out.print(st.peek().data+" ");
st.pop();
}
}
// Driver program to test above functions
public static void main(String[] args)
{
// Let us construct a binary tree
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.left = new Node(6);
root.right.right = new Node(7);
root.left.left.left = new Node(8);
root.left.right.right = new Node(9);
root.right.right.left = new Node(10);
System.out.println("Following are all keys and their ancestors");
for(int key = 1;key <= 10;key++)
{
System.out.print(key+": ");
printAncestors(root, key);
System.out.println();
}
}
}
//This code is Contributed by Sumit Ghosh
Python3
# Python3 program to print all ancestors of a given key
# Class for a tree node
class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
# Iterative Function to print all ancestors of a given key
def printAncestors(root, key):
if(root == None):
return;
# Create a stack to hold ancestors
st = []
# Traverse the complete tree in postorder way till we find the key
while(True):
# Traverse the left side. While traversing, append the nodes into
# the stack so that their right subtrees can be traversed later
while(root != None and root.data != key):
st.append(root); # append current node
root = root.left; # move to next node
# If the node whose ancestors are to be printed is found,
# then break the while loop.
if(root != None and root.data == key):
break;
# Check if right sub-tree exists for the node at top
# If not then pop that node because we don't need this
# node any more.
if(st[-1].right == None):
root = st[-1];
st.pop();
# If the popped node is right child of top, then remove the top
# as well. Left child of the top must have processed before.
while(len(st) != 0 and st[-1].right == root):
root = st[-1];
st.pop();
# if stack is not empty then simply set the root as right child
# of top and start traversing right sub-tree.
root = None if len(st) == 0 else st[-1].right;
# If stack is not empty, print contents of stack
# Here assumption is that the key is there in tree
while(len(st) != 0):
print(st[-1].data, end = " ")
st.pop();
# Driver program to test above functions
if __name__=='__main__':
# Let us construct a binary tree
root = Node(1);
root.left = Node(2);
root.right = Node(3);
root.left.left = Node(4);
root.left.right = Node(5);
root.right.left = Node(6);
root.right.right = Node(7);
root.left.left.left = Node(8);
root.left.right.right = Node(9);
root.right.right.left = Node(10);
print("Following are all keys and their ancestors");
for key in range(1, 11):
print(key, end = ": ");
printAncestors(root, key);
print();
# This code is contributed by rutvik_56.
C#
// C# program to print all ancestors
// of a given key
using System;
using System.Collections.Generic;
class GFG
{
// Class for a tree node
public class Node
{
public int data;
public Node left, right;
// constructor to create Node
// left and right are by default null
public Node(int data)
{
this.data = data;
}
}
// Iterative Function to print
// all ancestors of a given key
public static void printAncestors(Node root,
int key)
{
if (root == null)
{
return;
}
// Create a stack to hold ancestors
Stack st = new Stack();
// Traverse the complete tree in
// postorder way till we find the key
while (true)
{
// Traverse the left side. While
// traversing, push the nodes into
// the stack so that their right
// subtrees can be traversed later
while (root != null && root.data != key)
{
st.Push(root); // push current node
root = root.left; // move to next node
}
// If the node whose ancestors
// are to be printed is found,
// then break the while loop.
if (root != null && root.data == key)
{
break;
}
// Check if right sub-tree exists for
// the node at top. If not then pop
// that node because we don't need
// this node any more.
if (st.Peek().right == null)
{
root = st.Peek();
st.Pop();
// If the popped node is right child
// of top, then remove the top as well.
// Left child of the top must have
// processed before.
while (st.Count > 0 &&
st.Peek().right == root)
{
root = st.Peek();
st.Pop();
}
}
// if stack is not empty then simply
// set the root as right child of top
// and start traversing right sub-tree.
root = st.Count == 0 ?
null : st.Peek().right;
}
// If stack is not empty, print contents
// of stack. Here assumption is that the
// key is there in tree
while (st.Count > 0)
{
Console.Write(st.Peek().data + " ");
st.Pop();
}
}
// Driver Code
public static void Main(string[] args)
{
// Let us construct a binary tree
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.left = new Node(6);
root.right.right = new Node(7);
root.left.left.left = new Node(8);
root.left.right.right = new Node(9);
root.right.right.left = new Node(10);
Console.WriteLine("Following are all keys " +
"and their ancestors");
for (int key = 1; key <= 10; key++)
{
Console.Write(key + ": ");
printAncestors(root, key);
Console.WriteLine();
}
}
}
// This code is contributed by Shrikant13
Javascript
输出:
Following are all keys and their ancestors
1:
2: 1
3: 1
4: 2 1
5: 2 1
6: 3 1
7: 3 1
8: 4 2 1
9: 5 2 1
10: 7 3 1