📜  基本机器学习模型的流程图

📅  最后修改于: 2022-05-13 01:58:08.470000             🧑  作者: Mango

基本机器学习模型的流程图

根据可用的反馈,机器学习任务分为三类:

  1. 监督学习:这些是基于输入和输出的人工构建模型。
  2. 无监督学习:这些模型依赖于人工输入。没有给学习算法贴上标签,模型必须自己找出结构。
  3. 强化学习:这些是人工输入的模型。没有给学习算法贴上标签。该算法通过给定的奖励和惩罚进行学习。

可用于每个类别的算法是:

AlgorithmSupervisedUnsupervisedReinforcement 
Linear100
Logistic100
K-Means110
Anomaly Detection110
Neural Net111
KNN100
Decision Tee100
Random Forest100
SVM100
Naive Bayes100

下表给出了机器学习功能和各种任务的用途。要了解有关算法的更多信息,请单击此处。

Category

Algorithm



Function

Use

Basic RegressionLinearlinear_model.LinearRegression()Lots of numerical data
Logisticlinear_model.LogisticRegression()Target variable is categorical
Cluster AnalysisK-Meanscluster.KMeans()Similar datum into groups based on centroids
Anomaly Detectioncovariance.EllipticalEnvelope()Finding outliers through grouping
ClassificationNeural Netneural_network.MLPClassifier()Complex relationships. Prone to over fitting.
K-NNneighbors.KNeighborsClassifier()Group membership based on proximity
Decision Teetree.DecisionTreeClassifier()If/then/else. Non-contiguous data. Can also be regression.
Random Forestensemble.RandomForestClassifier()Find best split randomly. Can also be regression
SVM

svm.SVC() 

svm.LinearSVC()

Maximum margin classifier. Fundamental. Data Science algorithm
Naive BayesGaussianNB() MultinominalNB() BernoulliNB()Updating knowledge step by step with new info
Feature ReductionT-DISTRIB Stochastic NEIB Embeddingmanifold.TSNE()Visual high dimensional data. Convert similarity to joint probabilities
Principle Component Analysisdecomposition.PCA()Distill feature space into components that describe the greatest variance
Canonical Correlation Analysisdecomposition.CCA()Making sense of cross-correlation matrices
Linear Discriminant Analysislda.LDA()Linear combination of features that separates classes