📅  最后修改于: 2020-11-05 05:06:20             🧑  作者: Mango
INC指令用于将操作数加1。它对可以在寄存器或内存中的单个操作数起作用。
INC指令具有以下语法-
INC destination
操作数目的地可以是8位,16位或32位操作数。
INC EBX ; Increments 32-bit register
INC DL ; Increments 8-bit register
INC [count] ; Increments the count variable
DEC指令用于将操作数减1。它对可以在寄存器或内存中的单个操作数起作用。
DEC指令具有以下语法-
DEC destination
操作数目的地可以是8位,16位或32位操作数。
segment .data
count dw 0
value db 15
segment .text
inc [count]
dec [value]
mov ebx, count
inc word [ebx]
mov esi, value
dec byte [esi]
ADD和SUB指令用于对字节,字和双字大小的二进制数据进行简单的加/减,即分别用于添加或减去8位,16位或32位操作数。
ADD和SUB指令具有以下语法-
ADD/SUB destination, source
ADD / SUB指令可以发生在-
但是,像其他指令一样,使用ADD / SUB指令也无法进行存储器到存储器的操作。 ADD或SUB操作设置或清除溢出和进位标志。
下面的示例将要求用户输入两位数字,分别将这些数字存储在EAX和EBX寄存器中,将这些值相加,将结果存储在“ res ”存储位置中,最后显示结果。
SYS_EXIT equ 1
SYS_READ equ 3
SYS_WRITE equ 4
STDIN equ 0
STDOUT equ 1
segment .data
msg1 db "Enter a digit ", 0xA,0xD
len1 equ $- msg1
msg2 db "Please enter a second digit", 0xA,0xD
len2 equ $- msg2
msg3 db "The sum is: "
len3 equ $- msg3
segment .bss
num1 resb 2
num2 resb 2
res resb 1
section .text
global _start ;must be declared for using gcc
_start: ;tell linker entry point
mov eax, SYS_WRITE
mov ebx, STDOUT
mov ecx, msg1
mov edx, len1
int 0x80
mov eax, SYS_READ
mov ebx, STDIN
mov ecx, num1
mov edx, 2
int 0x80
mov eax, SYS_WRITE
mov ebx, STDOUT
mov ecx, msg2
mov edx, len2
int 0x80
mov eax, SYS_READ
mov ebx, STDIN
mov ecx, num2
mov edx, 2
int 0x80
mov eax, SYS_WRITE
mov ebx, STDOUT
mov ecx, msg3
mov edx, len3
int 0x80
; moving the first number to eax register and second number to ebx
; and subtracting ascii '0' to convert it into a decimal number
mov eax, [num1]
sub eax, '0'
mov ebx, [num2]
sub ebx, '0'
; add eax and ebx
add eax, ebx
; add '0' to to convert the sum from decimal to ASCII
add eax, '0'
; storing the sum in memory location res
mov [res], eax
; print the sum
mov eax, SYS_WRITE
mov ebx, STDOUT
mov ecx, res
mov edx, 1
int 0x80
exit:
mov eax, SYS_EXIT
xor ebx, ebx
int 0x80
编译并执行上述代码后,将产生以下结果-
Enter a digit:
3
Please enter a second digit:
4
The sum is:
7
具有硬编码变量的程序-
section .text
global _start ;must be declared for using gcc
_start: ;tell linker entry point
mov eax,'3'
sub eax, '0'
mov ebx, '4'
sub ebx, '0'
add eax, ebx
add eax, '0'
mov [sum], eax
mov ecx,msg
mov edx, len
mov ebx,1 ;file descriptor (stdout)
mov eax,4 ;system call number (sys_write)
int 0x80 ;call kernel
mov ecx,sum
mov edx, 1
mov ebx,1 ;file descriptor (stdout)
mov eax,4 ;system call number (sys_write)
int 0x80 ;call kernel
mov eax,1 ;system call number (sys_exit)
int 0x80 ;call kernel
section .data
msg db "The sum is:", 0xA,0xD
len equ $ - msg
segment .bss
sum resb 1
编译并执行上述代码后,将产生以下结果-
The sum is:
7
有两条指令用于将二进制数据相乘。 MUL(乘法)指令处理未签名的数据,而IMUL(整数乘法)则处理签名的数据。两条指令都影响进位和溢出标志。
MUL / IMUL指令的语法如下-
MUL/IMUL multiplier
在两种情况下,被乘数将在一个累加器中,具体取决于被乘数和乘数的大小,并且根据操作数的大小,生成的乘积还将存储在两个寄存器中。以下部分说明了三种不同情况下的MUL指令-
Sr.No. | Scenarios |
---|---|
1 |
When two bytes are multiplied − The multiplicand is in the AL register, and the multiplier is a byte in the memory or in another register. The product is in AX. High-order 8 bits of the product is stored in AH and the low-order 8 bits are stored in AL. |
2 |
When two one-word values are multiplied − The multiplicand should be in the AX register, and the multiplier is a word in memory or another register. For example, for an instruction like MUL DX, you must store the multiplier in DX and the multiplicand in AX. The resultant product is a doubleword, which will need two registers. The high-order (leftmost) portion gets stored in DX and the lower-order (rightmost) portion gets stored in AX. |
3 |
When two doubleword values are multiplied − When two doubleword values are multiplied, the multiplicand should be in EAX and the multiplier is a doubleword value stored in memory or in another register. The product generated is stored in the EDX:EAX registers, i.e., the high order 32 bits gets stored in the EDX register and the low order 32-bits are stored in the EAX register. |
MOV AL, 10
MOV DL, 25
MUL DL
...
MOV DL, 0FFH ; DL= -1
MOV AL, 0BEH ; AL = -66
IMUL DL
以下示例将3乘以2,并显示结果-
section .text
global _start ;must be declared for using gcc
_start: ;tell linker entry point
mov al,'3'
sub al, '0'
mov bl, '2'
sub bl, '0'
mul bl
add al, '0'
mov [res], al
mov ecx,msg
mov edx, len
mov ebx,1 ;file descriptor (stdout)
mov eax,4 ;system call number (sys_write)
int 0x80 ;call kernel
mov ecx,res
mov edx, 1
mov ebx,1 ;file descriptor (stdout)
mov eax,4 ;system call number (sys_write)
int 0x80 ;call kernel
mov eax,1 ;system call number (sys_exit)
int 0x80 ;call kernel
section .data
msg db "The result is:", 0xA,0xD
len equ $- msg
segment .bss
res resb 1
编译并执行上述代码后,将产生以下结果-
The result is:
6
除法运算生成两个元素-商和余数。如果是乘法,则不会发生溢出,因为使用了双倍长度寄存器来保存乘积。但是,在分割的情况下,可能会发生溢出。如果发生溢出,处理器将产生中断。
DIV(除法)指令用于未签名的数据,而IDIV(整数除法)用于签名的数据。
DIV / IDIV指令的格式-
DIV/IDIV divisor
股息在累加器中。两条指令都可以使用8位,16位或32位操作数。该操作影响所有六个状态标志。以下部分说明了三种操作数大小不同的除法情况-
Sr.No. | Scenarios |
---|---|
1 |
When the divisor is 1 byte − The dividend is assumed to be in the AX register (16 bits). After division, the quotient goes to the AL register and the remainder goes to the AH register. |
2 |
When the divisor is 1 word − The dividend is assumed to be 32 bits long and in the DX:AX registers. The high-order 16 bits are in DX and the low-order 16 bits are in AX. After division, the 16-bit quotient goes to the AX register and the 16-bit remainder goes to the DX register. |
3 |
When the divisor is doubleword − The dividend is assumed to be 64 bits long and in the EDX:EAX registers. The high-order 32 bits are in EDX and the low-order 32 bits are in EAX. After division, the 32-bit quotient goes to the EAX register and the 32-bit remainder goes to the EDX register. |
以下示例将8除以2。被除数8存储在16位AX寄存器中,除数2存储在8位BL寄存器中。
section .text
global _start ;must be declared for using gcc
_start: ;tell linker entry point
mov ax,'8'
sub ax, '0'
mov bl, '2'
sub bl, '0'
div bl
add ax, '0'
mov [res], ax
mov ecx,msg
mov edx, len
mov ebx,1 ;file descriptor (stdout)
mov eax,4 ;system call number (sys_write)
int 0x80 ;call kernel
mov ecx,res
mov edx, 1
mov ebx,1 ;file descriptor (stdout)
mov eax,4 ;system call number (sys_write)
int 0x80 ;call kernel
mov eax,1 ;system call number (sys_exit)
int 0x80 ;call kernel
section .data
msg db "The result is:", 0xA,0xD
len equ $- msg
segment .bss
res resb 1
编译并执行上述代码后,将产生以下结果-
The result is:
4