Python – tensorflow.clip_by_value()
TensorFlow 是由 Google 设计的开源Python库,用于开发机器学习模型和深度学习神经网络。
clip_by_value()用于将张量值裁剪为指定的最小值和最大值。
Syntax: tensorflow.clip_by_value( t, clip_value_min, clip_value_max, name )
Parameter:
- t: It is input Tensor.
- clip_value_min: It defines the minimum clip value.
- clip_value_max: It defines the maximum clip value.
- name(optional): It defines the name for the operation.
Returns:
It returns a clipped Tensor.
示例 1:
Python3
# Importing the library
import tensorflow as tf
# Initializing the input tensor
t = tf.constant([1, 2, 3, 4], dtype = tf.float64)
clip_value_min = 2
clip_value_max = 5
# Printing the input tensor
print('t: ', t)
print('clip_min: ', clip_value_min)
print('clip_max: ', clip_value_max)
# Calculating result
res = tf.clip_by_vlaue(t, clip_min, clip_max)
# Printing the result
print('Result: ', res)
Python3
# Importing the library
import tensorflow as tf
# Initializing the input tensor
t = tf.constant([[1, 2], [ 3, 4]], dtype = tf.float64)
clip_value_min = [2, 3]
clip_value_max = [5, 7]
# Printing the input tensor
print('t: ', t)
print('clip_min: ', clip_value_min)
print('clip_max: ', clip_value_max)
# Calculating result
res = tf.clip_by_value(t, clip_value_min, clip_value_max)
# Printing the result
print('Result: ', res)
输出:
t: tf.Tensor([1. 2. 3. 4.], shape=(4, ), dtype=float64)
clip_min: 2
clip_max: 5
Result: tf.Tensor([2. 2. 3. 4.], shape=(4, ), dtype=float64)
示例 2:
Python3
# Importing the library
import tensorflow as tf
# Initializing the input tensor
t = tf.constant([[1, 2], [ 3, 4]], dtype = tf.float64)
clip_value_min = [2, 3]
clip_value_max = [5, 7]
# Printing the input tensor
print('t: ', t)
print('clip_min: ', clip_value_min)
print('clip_max: ', clip_value_max)
# Calculating result
res = tf.clip_by_value(t, clip_value_min, clip_value_max)
# Printing the result
print('Result: ', res)
输出:
t: tf.Tensor(
[[1. 2.]
[3. 4.]], shape=(2, 2), dtype=float64)
clip_min: [2, 3]
clip_max: [5, 7]
Result: tf.Tensor(
[[2. 3.]
[3. 4.]], shape=(2, 2), dtype=float64)