📜  Python数据清理

📅  最后修改于: 2020-12-13 14:12:25             🧑  作者: Mango


在现实生活中,数据丢失始终是一个问题。机器学习和数据挖掘等领域在模型预测的准确性方面面临着严重的问题,因为缺少值会导致数据质量较差。在这些领域中,缺失值处理是使模型更准确和有效的主要重点。

什么时候以及为什么会丢失数据?

让我们考虑对产品进行在线调查。很多时候,人们不会共享与他们有关的所有信息。很少有人会分享他们的经验,但是不会分享他们使用该产品多长时间。很少有人分享他们使用该产品的时间,他们的经历而不是他们的联系信息。因此,总是以某种方式丢失一部分数据,这在实时情况下非常普遍。

现在让我们看看如何使用熊猫处理缺失值(例如NA或NaN)。

# import the pandas library
import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print df

输出如下-

one        two      three
a   0.077988   0.476149   0.965836
b        NaN        NaN        NaN
c  -0.390208  -0.551605  -2.301950
d        NaN        NaN        NaN
e  -2.000303  -0.788201   1.510072
f  -0.930230  -0.670473   1.146615
g        NaN        NaN        NaN
h   0.085100   0.532791   0.887415

使用重新索引,我们创建了一个缺少值的DataFrame。在输出中, NaN表示不是数字。

检查缺失值

为了使检测的缺失值更容易(和不同阵列dtypes),熊猫提供ISNULL()NOTNULL()函数,这也是对系列和数据帧的对象的方法-

import pandas as pd
import numpy as np
 
df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print df['one'].isnull()

输出如下-

a  False
b  True
c  False
d  True
e  False
f  False
g  True
h  False
Name: one, dtype: bool

清理/填充丢失的数据

熊猫提供了多种清除缺失值的方法。 fillna函数可以通过以下几种方法用非空数据“填充” NA值。

用标量值替换NaN

以下程序显示了如何将“ NaN”替换为“ 0”。

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(3, 3), index=['a', 'c', 'e'],columns=['one',
'two', 'three'])
df = df.reindex(['a', 'b', 'c'])
print df
print ("NaN replaced with '0':")
print df.fillna(0)

输出如下-

one        two     three
a  -0.576991  -0.741695  0.553172
b        NaN        NaN       NaN
c   0.744328  -1.735166  1.749580

NaN replaced with '0':
         one        two     three
a  -0.576991  -0.741695  0.553172
b   0.000000   0.000000  0.000000
c   0.744328  -1.735166  1.749580

在这里,我们用零值填充;相反,我们还可以填充其他任何值。

向前和向后填充NA

使用“重新索引”一章中讨论的填充概念,我们将填充缺少的值。

Method Action
pad/fill Fill methods Forward
bfill/backfill Fill methods Backward

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])
df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print df.fillna(method='pad')

输出如下-

one        two      three
a   0.077988   0.476149   0.965836
b   0.077988   0.476149   0.965836
c  -0.390208  -0.551605  -2.301950
d  -0.390208  -0.551605  -2.301950
e  -2.000303  -0.788201   1.510072
f  -0.930230  -0.670473   1.146615
g  -0.930230  -0.670473   1.146615
h   0.085100   0.532791   0.887415

删除缺失值

如果只想排除缺失值,则将dropna函数与axis参数一起使用。默认情况下,axis = 0,即沿着行,这意味着如果一行中的任何值为NA,那么将排除整个行。

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
print df.dropna()

输出如下-

one        two      three
a   0.077988   0.476149   0.965836
c  -0.390208  -0.551605  -2.301950
e  -2.000303  -0.788201   1.510072
f  -0.930230  -0.670473   1.146615
h   0.085100   0.532791   0.887415

替换缺失的(或)通用值

很多时候,我们必须用某个特定值替换一个通用值。我们可以通过应用replace方法来实现。

用标量值替换NA是fillna()函数的等效行为。

import pandas as pd
import numpy as np
df = pd.DataFrame({'one':[10,20,30,40,50,2000],
'two':[1000,0,30,40,50,60]})
print df.replace({1000:10,2000:60})

输出如下-

one  two
0   10   10
1   20    0
2   30   30
3   40   40
4   50   50
5   60   60