Python – tensorflow.math.bincount()
TensorFlow 是由 Google 设计的开源Python库,用于开发机器学习模型和深度学习神经网络。 bincount()存在于 TensorFlow 的数学模块中。它用于计算整数数组中每个数字的出现次数。
Syntax: tensorflow.math.bincount( arr, weights, minlength, maxlength, dtype, name)
Parameters:
- arr: It’s tensor of dtype int32 with non-negative values.
- weights(optional): It’s a tensor of same shape as arr. Count of each value in arr is incremented by it’s corresponding weight.
- minlength(optional): It defines the minimum length of returnted output.
- maxlength(optional): It defines the maximum length of returnted output. Bin of the values in arr that are greater than or equal to maxlength is not calculated.
- dtype(optional): It determines the dtype of returned output if weight is none.
- name(optional): It’s an optional argument that defines the name for the operation.
Returns:
It returns a vector with the same dtype as weights or the given dtype. Index of the vector defines the value and it’s value defines the bin of index in arr.
示例 1:
Python3
# importing the library
import tensorflow as tf
# initializing the input
a = tf.constant([1,2,3,4,5,1,7,3,1,1,5], dtype = tf.int32)
# printing the input
print('a: ',a)
# evaluating bin
r = tf.math.bincount(a)
# printing result
print("Result: ",r)
Python3
# importing the library
import tensorflow as tf
# initializing the input
a = tf.constant([1,2,3,4,5,1,7,3,1,1,5], dtype = tf.int32)
weight = tf.constant([0,2,1,0,2,1,3,3,1,0,5], dtype = tf.int32)
# printing the input
print('a: ',a)
print('weight: ',weight)
# evaluating bin
r = tf.math.bincount(arr = a,weights = weight)
# printing result
print("Result: ",r)
输出:
a: tf.Tensor([1 2 3 4 5 1 7 3 1 1 5], shape=(11,), dtype=int32)
Result: tf.Tensor([0 4 1 2 1 2 0 1], shape=(8,), dtype=int32)
# bin of 0 in input is 0, bin of 1 in input is 4 and so on
示例 2:此示例提供了权重,因此值不是 1,而是按相应的权重递增。
Python3
# importing the library
import tensorflow as tf
# initializing the input
a = tf.constant([1,2,3,4,5,1,7,3,1,1,5], dtype = tf.int32)
weight = tf.constant([0,2,1,0,2,1,3,3,1,0,5], dtype = tf.int32)
# printing the input
print('a: ',a)
print('weight: ',weight)
# evaluating bin
r = tf.math.bincount(arr = a,weights = weight)
# printing result
print("Result: ",r)
输出:
a: tf.Tensor([1 2 3 4 5 1 7 3 1 1 5], shape=(11,), dtype=int32)
weight: tf.Tensor([0 2 1 0 2 1 3 3 1 0 5], shape=(11,), dtype=int32)
Result: tf.Tensor([0 2 2 4 0 7 0 3], shape=(8,), dtype=int32)