Python – tensorflow.math.top_k()
TensorFlow 是由 Google 设计的开源Python库,用于开发机器学习模型和深度学习神经网络。
top_k()用于查找最后一个维度的前 k 个最大条目(沿矩阵的每一行)。
Syntax: tensorflow.math.top_k(input, k, sorted, name)
Parameter:
- input: It’s the input Tensor with 1 or more dimensions.
- k(optional): It’s is 0-D tensor with default value 0.
- sorted(optional): If it’s set to true returned elements will be sorted. Default is True.
- name(optional): It defines the name for the operation.
Returns:
- values: k largest elements along each last dimensional slice.
- indices: indices of values within the last dimension of input.
示例 1:
Python3
# importing the library
import tensorflow as tf
# Initializing the input tensor
a = tf.constant([7, 2, 3, 9, 5], dtype = tf.float64)
# Printing the input tensor
print('a: ', a)
# Calculating result
res = tf.math.top_k(a)
# Printing the result
print('Result: ', res)
Python3
# importing the library
import tensorflow as tf
# Initializing the input tensor
a = tf.constant([[7, 2, 3], [ 9, 5, 7]], dtype = tf.float64)
# Printing the input tensor
print('a: ', a)
# Calculating result
res = tf.math.top_k(a, k = 2)
# Printing the result
print('Result: ', res)
输出:
a: tf.Tensor([7. 2. 3. 9. 5.], shape=(5, ), dtype=float64)
Result: TopKV2(values=,
indices=)
示例 2:
Python3
# importing the library
import tensorflow as tf
# Initializing the input tensor
a = tf.constant([[7, 2, 3], [ 9, 5, 7]], dtype = tf.float64)
# Printing the input tensor
print('a: ', a)
# Calculating result
res = tf.math.top_k(a, k = 2)
# Printing the result
print('Result: ', res)
输出:
a: tf.Tensor(
[[7. 2. 3.]
[9. 5. 7.]], shape=(2, 3), dtype=float64)
Result: TopKV2(values=, indices=)