📜  设计求解球排序谜题的算法

📅  最后修改于: 2022-05-13 01:56:04.327000             🧑  作者: Mango

设计求解球排序谜题的算法

在 Ball Sort Puzzle 游戏中,我们有每种颜色的 p 个球和 n 个不同颜色的球,总共有 p×n 个球,排列成 n 堆。此外,我们有 2 个空栈。在给定时间,最多 p 个球可以在任何堆栈中。游戏的目标是按颜色对n堆中的每一个中的球进行分类

规则:

  • 只能移动每个堆栈的顶部球。
  • 一个球可以移动到另一个相同颜色的球上
  • 一个球可以在空堆栈中移动。

有关示例游戏(Level-7),请参阅以下 GIF:

7级游戏

方法一[递归和回溯]:

  • 根据给定的规则,可以生成一个简单的递归算法,如下所示:
    • 从所有球的给定初始位置开始
    • 创建一个初始的空队列。
    • 环形:
      • 如果当前位置已排序:
        • 返回
      • 别的
        • 将所有可能的移动放入队列中。
        • 从队列中取出下一个动作。
        • 转到循环。

但是,该方法看起来简单而正确,但几乎没有注意事项:

  • 不正确:
    • 如果队列中有 >1 次移动导致球的位置相同,我们可能会陷入无限循环。
  • 低效:
    • 我们最终可能会多次访问同一个位置。

因此,消除上述瓶颈将解决问题。

方法二【使用 HashMap 进行记忆化】:

  • 假设:
    • 我们将球的位置表示为字符串向量:{“gbbb”, “ybry”, “yggy”, “rrrg”}
  • 创建一个名为Visited of 的集合,它将包含访问过的位置作为一个长字符串。
  • A nswer创建一个空向量,它将存储管的位置 以将顶部球从管 a 移动到管 b 中。
  • 使用球的初始设置初始化网格
  • 函数求解器(网格):
    • 网格添加到已访问
    • 遍历所有堆栈( i ):
      • 遍历所有堆栈( j ):
        • 如果 move i -> j有效,则使用该 move 创建newGrid
          • 如果球在newGrid中排序,
            • 更新答案
            • 返回;
          • 如果新网格 不在访问
            • 求解器(新网格
            • 如果解决:
              • 更新答案

示例游戏输入 I:

3级

样本输入 I:

5
ybrb
byrr
rbyy

样本输出一:

Move 1 to 4 1 times
Move 1 to 5 1 times
Move 1 to 4 1 times
Move 2 to 5 2 times
Move 1 to 2 1 times
Move 3 to 1 1 times
Move 1 to 2 1 times
Move 3 to 1 1 times
Move 2 to 1 3 times
Move 2 to 3 1 times
Move 3 to 4 1 times
Move 3 to 2 1 times
Move 2 to 4 1 times
Move 3 to 5 1 times

示例游戏输入 II:

5级

样本输入二:

6
gbbb
ybry
yggy
rrrg

样本输出二:

Move 1 to 5 3 times
Move 2 to 6 1 times
Move 3 to 6 1 times
Move 1 to 3 1 times
Move 2 to 1 1 times
Move 2 to 5 1 times
Move 2 to 6 1 times
Move 3 to 2 3 times
Move 3 to 6 1 times
Move 4 to 2 1 times
Move 1 to 4 1 times

请参阅下面的 C++ 实现和注释以供参考:

C++
// C++ program for the above approach
#include 
using namespace std;
using Grid = vector;
 
Grid configureGrid(string stacks[], int numberOfStacks)
{
 
    Grid grid;
    for (int i = 0; i < numberOfStacks; i++)
        grid.push_back(stacks[i]);
 
    return grid;
}
 
// Function to find the max
int getStackHeight(Grid grid)
{
    int max = 0;
    for (auto stack : grid)
        if (max < stack.size())
            max = stack.size();
    return max;
}
 
// Convert vector of strings to
// canonicalRepresentation of strings
string canonicalStringConversion(Grid grid)
{
    string finalString;
    sort(grid.begin(), grid.end());
    for (auto stack : grid) {
        finalString += (stack + ";");
    }
    return finalString;
}
 
// Function to check if it is solved
// or not
bool isSolved(Grid grid, int stackHeight)
{
 
    for (auto stack : grid) {
        if (!stack.size())
            continue;
        else if (stack.size() < stackHeight)
            return false;
        else if (std::count(stack.begin(),
                            stack.end(),
                            stack[0])
                 != stackHeight)
            return false;
    }
    return true;
}
 
// Check if the move is valid
bool isValidMove(string sourceStack,
                 string destinationStack,
                 int height)
{
 
    // Can't move from an empty stack
    // or to a FULL STACK
    if (sourceStack.size() == 0
        || destinationStack.size() == height)
        return false;
 
    int colorFreqs
        = std::count(sourceStack.begin(),
                     sourceStack.end(),
                     sourceStack[0]);
 
    // If the source stack is same colored,
    // don't touch it
    if (colorFreqs == height)
        return false;
 
    if (destinationStack.size() == 0) {
 
        // If source stack has only
        // same colored balls,
        // don't touch it
        if (colorFreqs == sourceStack.size())
            return false;
        return true;
    }
    return (
        sourceStack[sourceStack.size() - 1]
        == destinationStack[destinationStack.size() - 1]);
}
 
// Function to solve the puzzle
bool solvePuzzle(Grid grid, int stackHeight,
                 unordered_set& visited,
                 vector >& answerMod)
{
    if (stackHeight == -1) {
        stackHeight = getStackHeight(grid);
    }
    visited.insert(
        canonicalStringConversion(grid));
 
    for (int i = 0; i < grid.size(); i++) {
 
        // Iterate over all the stacks
        string sourceStack = grid[i];
        for (int j = 0; j < grid.size(); j++) {
            if (i == j)
                continue;
            string destinationStack = grid[j];
            if (isValidMove(sourceStack,
                            destinationStack,
                            stackHeight)) {
 
                // Creating a new Grid
                // with the valid move
                Grid newGrid(grid);
 
                // Adding the ball
                newGrid[j].push_back(newGrid[i].back());
 
                // Adding the ball
                newGrid[i].pop_back();
                if (isSolved(newGrid, stackHeight)) {
                    answerMod.push_back(
                        vector{ i, j, 1 });
                    return true;
                }
                if (visited.find(
                        canonicalStringConversion(newGrid))
                    == visited.end()) {
                    bool solveForTheRest
                        = solvePuzzle(newGrid, stackHeight,
                                      visited, answerMod);
                    if (solveForTheRest) {
                        vector lastMove
                            = answerMod[answerMod.size()
                                        - 1];
 
                        // Optimisation - Concatenating
                        // consecutive moves of the same
                        // ball
                        if (lastMove[0] == i
                            && lastMove[1] == j)
                            answerMod[answerMod.size() - 1]
                                     [2]++;
                        else
                            answerMod.push_back(
                                vector{ i, j, 1 });
                        return true;
                    }
                }
            }
        }
    }
    return false;
}
 
// Checks whether the grid is valid or not
bool checkGrid(Grid grid)
{
 
    int numberOfStacks = grid.size();
    int stackHeight = getStackHeight(grid);
    int numBallsExpected
        = ((numberOfStacks - 2) * stackHeight);
    // Cause 2 empty stacks
    int numBalls = 0;
 
    for (auto i : grid)
        numBalls += i.size();
    if (numBalls != numBallsExpected) {
        cout << "Grid has incorrect # of balls"
             << endl;
        return false;
    }
    map ballColorFrequency;
    for (auto stack : grid)
        for (auto ball : stack)
            if (ballColorFrequency.find(ball)
                != ballColorFrequency.end())
                ballColorFrequency[ball] += 1;
            else
                ballColorFrequency[ball] = 1;
    for (auto ballColor : ballColorFrequency) {
        if (ballColor.second != getStackHeight(grid)) {
            cout << "Color " << ballColor.first
                 << " is not " << getStackHeight(grid)
                 << endl;
            return false;
        }
    }
    return true;
}
 
// Driver Code
int main(void)
{
 
    // Including 2 empty stacks
    int numberOfStacks = 6;
    std::string stacks[]
        = { "gbbb", "ybry", "yggy", "rrrg", "", "" };
 
    Grid grid = configureGrid(
        stacks, numberOfStacks);
    if (!checkGrid(grid)) {
        cout << "Invalid Grid" << endl;
        return 1;
    }
    if (isSolved(grid, getStackHeight(grid))) {
        cout << "Problem is already solved"
             << endl;
        return 0;
    }
    unordered_set visited;
    vector > answerMod;
 
    // Solve the puzzle instance
    solvePuzzle(grid, getStackHeight(grid),
                visited,
                answerMod);
 
    // Since the values of Answers are appended
    // When the problem was completely
    // solved and backwards from there
    reverse(answerMod.begin(), answerMod.end());
 
    for (auto v : answerMod) {
        cout << "Move " << v[0] + 1
             << " to " << v[1] + 1
             << " " << v[2] << " times"
             << endl;
    }
    return 0;
}



输出
Move 1 to 5 3 times
Move 2 to 6 1 times
Move 3 to 6 1 times
Move 1 to 3 1 times
Move 2 to 1 1 times
Move 2 to 5 1 times
Move 2 to 6 1 times
Move 3 to 2 3 times
Move 3 to 6 1 times
Move 4 to 2 1 times
Move 1 to 4 1 times