最大乘积子数组的Java程序
给定一个包含正整数和负整数的数组,找到最大乘积子数组的乘积。预期时间复杂度为 O(n),只能使用 O(1) 额外空间。
例子:
Input: arr[] = {6, -3, -10, 0, 2}
Output: 180 // The subarray is {6, -3, -10}
Input: arr[] = {-1, -3, -10, 0, 60}
Output: 60 // The subarray is {60}
Input: arr[] = {-2, -40, 0, -2, -3}
Output: 80 // The subarray is {-2, -40}
天真的解决方案:
这个想法是遍历每个连续的子数组,找到每个子数组的乘积并从这些结果中返回最大乘积。
下面是上述方法的实现。
Java
// Java program to find maximum product subarray
import java.io.*;
class GFG {
/* Returns the product of max product subarray.*/
static int maxSubarrayProduct(int arr[])
{
// Initializing result
int result = arr[0];
int n = arr.length;
for (int i = 0; i < n; i++)
{
int mul = arr[i];
// traversing in current subarray
for (int j = i + 1; j < n; j++)
{
// updating result every time
// to keep an eye over the
// maximum product
result = Math.max(result, mul);
mul *= arr[j];
}
// updating the result for (n-1)th index.
result = Math.max(result, mul);
}
return result;
}
// Driver Code
public static void main(String[] args)
{
int arr[] = { 1, -2, -3, 0, 7, -8, -2 };
System.out.println("Maximum Sub array product is "
+ maxSubarrayProduct(arr));
}
}
// This code is contributed by yashbeersingh42
Java
// Java program to find maximum product subarray
import java.io.*;
class ProductSubarray {
// Utility functions to get
// minimum of two integers
static int min(int x, int y) {
return x < y ? x : y;
}
// Utility functions to get
// maximum of two integers
static int max(int x, int y) {
return x > y ? x : y;
}
/* Returns the product of
max product subarray.
Assumes that the given
array always has a subarray
with product more than 1 */
static int maxSubarrayProduct(int arr[])
{
int n = arr.length;
// max positive product
// ending at the current
// position
int max_ending_here = 1;
// min negative product
// ending at the current
// position
int min_ending_here = 1;
// Initialize overall max product
int max_so_far = 0;
int flag = 0;
/* Traverse through the array. Following
values are maintained after the ith iteration:
max_ending_here is always 1 or some positive product
ending with arr[i]
min_ending_here is always 1 or some negative product
ending with arr[i] */
for (int i = 0; i < n; i++)
{
/* If this element is positive, update
max_ending_here. Update min_ending_here only
if min_ending_here is negative */
if (arr[i] > 0)
{
max_ending_here = max_ending_here * arr[i];
min_ending_here
= min(min_ending_here * arr[i], 1);
flag = 1;
}
/* If this element is 0, then the maximum
product cannot end here, make both
max_ending_here and min_ending _here 0
Assumption: Output is alway greater than or
equal to 1. */
else if (arr[i] == 0)
{
max_ending_here = 1;
min_ending_here = 1;
}
/* If element is negative. This is tricky
max_ending_here can either be 1 or positive.
min_ending_here can either be 1 or negative.
next min_ending_here will always be prev.
max_ending_here * arr[i]
next max_ending_here will be 1 if prev
min_ending_here is 1, otherwise
next max_ending_here will be
prev min_ending_here * arr[i] */
else {
int temp = max_ending_here;
max_ending_here
= max(min_ending_here * arr[i], 1);
min_ending_here = temp * arr[i];
}
// update max_so_far, if needed
if (max_so_far < max_ending_here)
max_so_far = max_ending_here;
}
if (flag == 0 && max_so_far == 0)
return 0;
return max_so_far;
}
// Driver Code
public static void main(String[] args)
{
int arr[] = { 1, -2, -3, 0, 7, -8, -2 };
System.out.println("Maximum Sub array product is "
+ maxSubarrayProduct(arr));
}
} /*This code is contributed by Devesh Agrawal*/
输出:
Maximum Sub array product is 112
时间复杂度: O(N 2 )
辅助空间: O(1)
高效解决方案:
以下解决方案假定给定的输入数组始终具有正输出。该解决方案适用于上述所有情况。它不适用于 {0, 0, -20, 0}, {0, 0, 0}.. 等数组。可以轻松修改解决方案以处理这种情况。
它类似于最大和连续子数组问题。这里唯一需要注意的是,最大乘积也可以通过以前一个元素结尾的最小(负)乘积乘以这个元素来获得。例如,在数组{12, 2, -3, -5, -6, -2}中,当我们在元素-2处时,最大乘积是乘积,最小乘积以-6和-2结尾。
Java
// Java program to find maximum product subarray
import java.io.*;
class ProductSubarray {
// Utility functions to get
// minimum of two integers
static int min(int x, int y) {
return x < y ? x : y;
}
// Utility functions to get
// maximum of two integers
static int max(int x, int y) {
return x > y ? x : y;
}
/* Returns the product of
max product subarray.
Assumes that the given
array always has a subarray
with product more than 1 */
static int maxSubarrayProduct(int arr[])
{
int n = arr.length;
// max positive product
// ending at the current
// position
int max_ending_here = 1;
// min negative product
// ending at the current
// position
int min_ending_here = 1;
// Initialize overall max product
int max_so_far = 0;
int flag = 0;
/* Traverse through the array. Following
values are maintained after the ith iteration:
max_ending_here is always 1 or some positive product
ending with arr[i]
min_ending_here is always 1 or some negative product
ending with arr[i] */
for (int i = 0; i < n; i++)
{
/* If this element is positive, update
max_ending_here. Update min_ending_here only
if min_ending_here is negative */
if (arr[i] > 0)
{
max_ending_here = max_ending_here * arr[i];
min_ending_here
= min(min_ending_here * arr[i], 1);
flag = 1;
}
/* If this element is 0, then the maximum
product cannot end here, make both
max_ending_here and min_ending _here 0
Assumption: Output is alway greater than or
equal to 1. */
else if (arr[i] == 0)
{
max_ending_here = 1;
min_ending_here = 1;
}
/* If element is negative. This is tricky
max_ending_here can either be 1 or positive.
min_ending_here can either be 1 or negative.
next min_ending_here will always be prev.
max_ending_here * arr[i]
next max_ending_here will be 1 if prev
min_ending_here is 1, otherwise
next max_ending_here will be
prev min_ending_here * arr[i] */
else {
int temp = max_ending_here;
max_ending_here
= max(min_ending_here * arr[i], 1);
min_ending_here = temp * arr[i];
}
// update max_so_far, if needed
if (max_so_far < max_ending_here)
max_so_far = max_ending_here;
}
if (flag == 0 && max_so_far == 0)
return 0;
return max_so_far;
}
// Driver Code
public static void main(String[] args)
{
int arr[] = { 1, -2, -3, 0, 7, -8, -2 };
System.out.println("Maximum Sub array product is "
+ maxSubarrayProduct(arr));
}
} /*This code is contributed by Devesh Agrawal*/
输出
Maximum Sub array product is 112
时间复杂度: O(n)
辅助空间: O(1)
有关更多详细信息,请参阅有关最大乘积子阵列的完整文章!