📜  联合查找算法| (按等级合并并按优化路径压缩查找)

📅  最后修改于: 2021-04-17 10:08:07             🧑  作者: Mango

检查给定图是否包含循环。

例子:

输入: 输出:图形包含循环。输入: 输出:图形不包含循环。

先决条件:不交集(或并集查找),按等级和路径压缩的并集

我们已经讨论了联合发现以检测周期。在这里,我们讨论通过路径压缩查找,在这种情况下,它经过稍微修改以比原始方法更快地工作,因为每次上图时我们都跳过一个级别。查找函数的实现是迭代的,因此不涉及开销。优化查找函数复杂度为O(log *(n)),即迭代对数,对于重复调用,该对数收敛到O(1)。

请参阅此链接以获取
联合证明的对数*(n)复杂度证明
查找函数的说明:
以示例1理解find函数:

(1)首次调用find(8),映射将如下所示:

查找函数花了3个映射来获取节点8的根。映射如下所示:
从节点8跳过节点7,到达节点6。
从节点6跳过节点5,到达节点4。
从节点4跳过节点2,到达节点0。

(2)再次调用find(8),映射将如下所示:

查找函数花了2个映射来获取节点8的根。映射如下所示:
从节点8,跳过节点5,节点6和节点7,到达节点4。
从节点4跳过节点2,到达节点0。

(3)第三次调用find(8),映射将如下所示:

最后,我们发现find函数仅用1个映射即可获取节点8的根。映射如下所示:
从节点8跳过节点5,节点6,节点7,节点4和节点2,到达节点0。
这就是它将收敛从某些映射到单个映射的路径的方式。

示例1的说明

最初,数组大小和Arr看起来像:
Arr [9] = {0、1、2、3、4、5、6、7、8}
大小[9] = {1,1,1,1,1,1,1,1,1}

考虑图中的边,并如下所示将它们一个一个地添加到不相交的联合集中:
优势1:0-1
find(0)=> 0,find(1)=> 1,两者都有不同的根父级
将它们放在单个连接的组件中,因为当前它们不属于不同的连接组件。
Arr [1] = 0,大小[0] = 2;

边缘2:0-2
find(0)=> 0,find(2)=> 2,两者都有不同的根父级
Arr [2] = 0,大小[0] = 3;

优势3:1-3
find(1)=> 0,find(3)=> 3,两者都有不同的根父级
Arr [3] = 0,大小[0] = 3;

优势4:3-4
find(3)=> 1,find(4)=> 4,两者都有不同的根父级
Arr [4] = 0,大小[0] = 4;

优势5:2-4
find(2)=> 0,find(4)=> 0,两者都有相同的根父级
因此,图中存在一个循环。
我们停止进一步检查图中的周期。

C++
// CPP program to implement Union-Find with union
// by rank and path compression.
#include 
using namespace std;
  
const int MAX_VERTEX = 101;
  
// Arr to represent parent of index i
int Arr[MAX_VERTEX];
  
// Size to represent the number of nodes
// in subgxrph rooted at index i
int size[MAX_VERTEX];
  
// set parent of every node to itself and
// size of node to one
void initialize(int n)
{
    for (int i = 0; i <= n; i++) {
        Arr[i] = i;
        size[i] = 1;
    }
}
  
// Each time we follow a path, find function
// compresses it further until the path length
// is greater than or equal to 1.
int find(int i)
{
    // while we reach a node whose parent is
    // equal to itself
    while (Arr[i] != i)
    {
        Arr[i] = Arr[Arr[i]]; // Skip one level
        i = Arr[i]; // Move to the new level
    }
    return i;
}
  
// A function that does union of two nodes x and y
// where xr is root node  of x and yr is root node of y
void _union(int xr, int yr)
{
    if (size[xr] < size[yr]) // Make yr parent of xr
    {
        Arr[xr] = Arr[yr];
        size[yr] += size[xr];
    }
    else // Make xr parent of yr
    {
        Arr[yr] = Arr[xr];
        size[xr] += size[yr];
    }
}
  
// The main function to check whether a given
// gxrph contains cycle or not
int isCycle(vector adj[], int V)
{
    // Itexrte through all edges of gxrph, find
    // nodes connecting them.
    // If root nodes of both are same, then there is
    // cycle in gxrph.
    for (int i = 0; i < V; i++) {
        for (int j = 0; j < adj[i].size(); j++) {
            int x = find(i); // find root of i
            int y = find(adj[i][j]); // find root of adj[i][j]
  
            if (x == y)
                return 1; // If same parent
            _union(x, y); // Make them connect
        }
    }
    return 0;
}
  
// Driver progxrm to test above functions
int main()
{
    int V = 3;
  
    // Initialize the values for arxry Arr and Size
    initialize(V);
  
    /* Let us create following gxrph
         0
        |  \
        |    \
        1-----2 */
  
    vector adj[V]; // Adjacency list for gxrph
  
    adj[0].push_back(1);
    adj[0].push_back(2);
    adj[1].push_back(2);
  
    // call is_cycle to check if it contains cycle
    if (isCycle(adj, V))
        cout << "Gxrph contains Cycle.\n";
    else
        cout << "Gxrph does not contain Cycle.\n";
  
    return 0;
}


Java
// Java program to implement Union-Find with union
// by rank and path compression
import java.util.*;
  
class GFG 
{
static int MAX_VERTEX = 101;
  
// Arr to represent parent of index i
static int []Arr = new int[MAX_VERTEX];
  
// Size to represent the number of nodes
// in subgxrph rooted at index i
static int []size = new int[MAX_VERTEX];
  
// set parent of every node to itself and
// size of node to one
static void initialize(int n)
{
    for (int i = 0; i <= n; i++)
    {
        Arr[i] = i;
        size[i] = 1;
    }
}
  
// Each time we follow a path, find function
// compresses it further until the path length
// is greater than or equal to 1.
static int find(int i)
{
    // while we reach a node whose parent is
    // equal to itself
    while (Arr[i] != i)
    {
        Arr[i] = Arr[Arr[i]]; // Skip one level
        i = Arr[i]; // Move to the new level
    }
    return i;
}
  
// A function that does union of two nodes x and y
// where xr is root node of x and yr is root node of y
static void _union(int xr, int yr)
{
    if (size[xr] < size[yr]) // Make yr parent of xr
    {
        Arr[xr] = Arr[yr];
        size[yr] += size[xr];
    }
    else // Make xr parent of yr
    {
        Arr[yr] = Arr[xr];
        size[xr] += size[yr];
    }
}
  
// The main function to check whether a given
// gxrph contains cycle or not
static int isCycle(Vector adj[], int V)
{
    // Itexrte through all edges of gxrph, 
    // find nodes connecting them.
    // If root nodes of both are same, 
    // then there is cycle in gxrph.
    for (int i = 0; i < V; i++)
    {
        for (int j = 0; j < adj[i].size(); j++) 
        {
            int x = find(i); // find root of i
              
            // find root of adj[i][j]
            int y = find(adj[i].get(j)); 
  
            if (x == y)
                return 1; // If same parent
            _union(x, y); // Make them connect
        }
    }
    return 0;
}
  
// Driver Code
public static void main(String[] args) 
{
    int V = 3;
  
    // Initialize the values for arxry Arr and Size
    initialize(V);
  
    /* Let us create following gxrph
        0
        | \
        | \
        1-----2 */
  
    // Adjacency list for graph
    Vector []adj = new Vector[V]; 
    for(int i = 0; i < V; i++)
        adj[i] = new Vector();
  
    adj[0].add(1);
    adj[0].add(2);
    adj[1].add(2);
  
    // call is_cycle to check if it contains cycle
    if (isCycle(adj, V) == 1)
        System.out.print("Graph contains Cycle.\n");
    else
        System.out.print("Graph does not contain Cycle.\n");
    }
}
  
// This code is contributed by PrinciRaj1992


Python3
# Python3 program to implement Union-Find 
# with union by rank and path compression.
  
# set parent of every node to itself 
# and size of node to one 
def initialize(n):
    global Arr, size
    for i in range(n + 1):
        Arr[i] = i 
        size[i] = 1
  
# Each time we follow a path, find 
# function compresses it further 
# until the path length is greater 
# than or equal to 1. 
def find(i):
    global Arr, size
      
    # while we reach a node whose 
    # parent is equal to itself 
    while (Arr[i] != i):
        Arr[i] = Arr[Arr[i]] # Skip one level 
        i = Arr[i] # Move to the new level
    return i
  
# A function that does union of two 
# nodes x and y where xr is root node 
# of x and yr is root node of y 
def _union(xr, yr):
    global Arr, size
    if (size[xr] < size[yr]): # Make yr parent of xr 
        Arr[xr] = Arr[yr] 
        size[yr] += size[xr]
    else: # Make xr parent of yr
        Arr[yr] = Arr[xr] 
        size[xr] += size[yr]
  
# The main function to check whether 
# a given graph contains cycle or not 
def isCycle(adj, V):
    global Arr, size
      
    # Itexrte through all edges of gxrph, 
    # find nodes connecting them. 
    # If root nodes of both are same, 
    # then there is cycle in gxrph.
    for i in range(V):
        for j in range(len(adj[i])):
            x = find(i) # find root of i 
            y = find(adj[i][j]) # find root of adj[i][j] 
  
            if (x == y):
                return 1 # If same parent 
            _union(x, y) # Make them connect
    return 0
  
# Driver Code
MAX_VERTEX = 101
  
# Arr to represent parent of index i 
Arr = [None] * MAX_VERTEX 
  
# Size to represent the number of nodes 
# in subgxrph rooted at index i 
size = [None] * MAX_VERTEX 
  
V = 3
  
# Initialize the values for arxry 
# Arr and Size 
initialize(V) 
  
# Let us create following gxrph 
#     0 
# | \ 
# | \ 
# 1-----2 
  
# Adjacency list for graph 
adj = [[] for i in range(V)] 
  
adj[0].append(1) 
adj[0].append(2) 
adj[1].append(2) 
  
# call is_cycle to check if it 
# contains cycle 
if (isCycle(adj, V)): 
    print("Graph contains Cycle.") 
else:
    print("Graph does not contain Cycle.")
  
# This code is contributed by PranchalK


C#
// C# program to implement Union-Find 
// with union by rank and path compression
using System;
using System.Collections.Generic;
      
class GFG 
{
static int MAX_VERTEX = 101;
  
// Arr to represent parent of index i
static int []Arr = new int[MAX_VERTEX];
  
// Size to represent the number of nodes
// in subgxrph rooted at index i
static int []size = new int[MAX_VERTEX];
  
// set parent of every node to itself 
// and size of node to one
static void initialize(int n)
{
    for (int i = 0; i <= n; i++)
    {
        Arr[i] = i;
        size[i] = 1;
    }
}
  
// Each time we follow a path, 
// find function compresses it further 
// until the path length is greater than 
// or equal to 1.
static int find(int i)
{
    // while we reach a node whose 
    // parent is equal to itself
    while (Arr[i] != i)
    {
        Arr[i] = Arr[Arr[i]]; // Skip one level
        i = Arr[i]; // Move to the new level
    }
    return i;
}
  
// A function that does union of 
// two nodes x and y where xr is 
// root node of x and yr is root node of y
static void _union(int xr, int yr)
{
    if (size[xr] < size[yr]) // Make yr parent of xr
    {
        Arr[xr] = Arr[yr];
        size[yr] += size[xr];
    }
    else // Make xr parent of yr
    {
        Arr[yr] = Arr[xr];
        size[xr] += size[yr];
    }
}
  
// The main function to check whether 
// a given graph contains cycle or not
static int isCycle(List []adj, int V)
{
    // Itexrte through all edges of graph, 
    // find nodes connecting them.
    // If root nodes of both are same, 
    // then there is cycle in graph.
    for (int i = 0; i < V; i++)
    {
        for (int j = 0; j < adj[i].Count; j++) 
        {
            int x = find(i); // find root of i
              
            // find root of adj[i][j]
            int y = find(adj[i][j]); 
  
            if (x == y)
                return 1; // If same parent
            _union(x, y); // Make them connect
        }
    }
    return 0;
}
  
// Driver Code
public static void Main(String[] args) 
{
    int V = 3;
  
    // Initialize the values for 
    // array Arr and Size
    initialize(V);
  
    /* Let us create following graph
        0
        | \
        | \
        1-----2 */
  
    // Adjacency list for graph
    List []adj = new List[V]; 
    for(int i = 0; i < V; i++)
        adj[i] = new List();
  
    adj[0].Add(1);
    adj[0].Add(2);
    adj[1].Add(2);
  
    // call is_cycle to check if it contains cycle
    if (isCycle(adj, V) == 1)
        Console.Write("Graph contains Cycle.\n");
    else
        Console.Write("Graph does not contain Cycle.\n");
    }
}
  
// This code is contributed by Rajput-Ji


输出:

Graph contains Cycle.

时间复杂度(查找): O(log *(n))
时间复杂度(联盟): O(1)