给我们一个Trie,其中存储了一组字符串。现在,用户输入了他的搜索查询的前缀,我们需要为他提供所有建议,以便根据存储在Trie中的字符串自动完成他的查询。我们假设Trie存储用户过去的搜索。
例如,如果Trie商店{“ abc”,“ abcd”,“ aa”,“ abbbaba”}和用户键入“ ab”,则必须向他显示{“ abc”,“ abcd”,“ abbbaba”}。
前提条件Trie搜索和插入。
给定查询前缀,我们搜索所有具有该查询的单词。
- 使用标准Trie搜索算法搜索给定查询。
- 如果查询前缀本身不存在,则返回-1表示相同。
- 如果查询存在并且在Trie中是单词的结尾,则打印查询。可以通过查看最后一个匹配的节点是否设置了isEndWord标志来快速检查。我们在Trie中使用此标志来标记单词节点的末尾,以进行搜索。
- 如果查询的最后一个匹配节点没有子节点,则返回。
- 否则,递归地打印最后一个匹配节点的子树下的所有节点。
以下是上述步骤的一些实现。
C++
// C++ program to demonstrate auto-complete feature
// using Trie data structure.
#include
using namespace std;
// Alphabet size (# of symbols)
#define ALPHABET_SIZE (26)
// Converts key current character into index
// use only 'a' through 'z' and lower case
#define CHAR_TO_INDEX(c) ((int)c - (int)'a')
// trie node
struct TrieNode
{
struct TrieNode *children[ALPHABET_SIZE];
// isWordEnd is true if the node represents
// end of a word
bool isWordEnd;
};
// Returns new trie node (initialized to NULLs)
struct TrieNode *getNode(void)
{
struct TrieNode *pNode = new TrieNode;
pNode->isWordEnd = false;
for (int i = 0; i < ALPHABET_SIZE; i++)
pNode->children[i] = NULL;
return pNode;
}
// If not present, inserts key into trie. If the
// key is prefix of trie node, just marks leaf node
void insert(struct TrieNode *root, const string key)
{
struct TrieNode *pCrawl = root;
for (int level = 0; level < key.length(); level++)
{
int index = CHAR_TO_INDEX(key[level]);
if (!pCrawl->children[index])
pCrawl->children[index] = getNode();
pCrawl = pCrawl->children[index];
}
// mark last node as leaf
pCrawl->isWordEnd = true;
}
// Returns true if key presents in trie, else false
bool search(struct TrieNode *root, const string key)
{
int length = key.length();
struct TrieNode *pCrawl = root;
for (int level = 0; level < length; level++)
{
int index = CHAR_TO_INDEX(key[level]);
if (!pCrawl->children[index])
return false;
pCrawl = pCrawl->children[index];
}
return (pCrawl != NULL && pCrawl->isWordEnd);
}
// Returns 0 if current node has a child
// If all children are NULL, return 1.
bool isLastNode(struct TrieNode* root)
{
for (int i = 0; i < ALPHABET_SIZE; i++)
if (root->children[i])
return 0;
return 1;
}
// Recursive function to print auto-suggestions for given
// node.
void suggestionsRec(struct TrieNode* root, string currPrefix)
{
// found a string in Trie with the given prefix
if (root->isWordEnd)
{
cout << currPrefix;
cout << endl;
}
// All children struct node pointers are NULL
if (isLastNode(root))
return;
for (int i = 0; i < ALPHABET_SIZE; i++)
{
if (root->children[i])
{
// append current character to currPrefix string
currPrefix.push_back(97 + i);
// recur over the rest
suggestionsRec(root->children[i], currPrefix);
// remove last character
currPrefix.pop_back();
}
}
}
// print suggestions for given query prefix.
int printAutoSuggestions(TrieNode* root, const string query)
{
struct TrieNode* pCrawl = root;
// Check if prefix is present and find the
// the node (of last level) with last character
// of given string.
int level;
int n = query.length();
for (level = 0; level < n; level++)
{
int index = CHAR_TO_INDEX(query[level]);
// no string in the Trie has this prefix
if (!pCrawl->children[index])
return 0;
pCrawl = pCrawl->children[index];
}
// If prefix is present as a word.
bool isWord = (pCrawl->isWordEnd == true);
// If prefix is last node of tree (has no
// children)
bool isLast = isLastNode(pCrawl);
// If prefix is present as a word, but
// there is no subtree below the last
// matching node.
if (isWord && isLast)
{
cout << query << endl;
return -1;
}
// If there are are nodes below last
// matching character.
if (!isLast)
{
string prefix = query;
suggestionsRec(pCrawl, prefix);
return 1;
}
}
// Driver Code
int main()
{
struct TrieNode* root = getNode();
insert(root, "hello");
insert(root, "dog");
insert(root, "hell");
insert(root, "cat");
insert(root, "a");
insert(root, "hel");
insert(root, "help");
insert(root, "helps");
insert(root, "helping");
int comp = printAutoSuggestions(root, "hel");
if (comp == -1)
cout << "No other strings found with this prefix\n";
else if (comp == 0)
cout << "No string found with this prefix\n";
return 0;
}
Python3
# Python3 program to demonstrate auto-complete
# feature using Trie data structure.
# Note: This is a basic implementation of Trie
# and not the most optimized one.
class TrieNode():
def __init__(self):
# Initialising one node for trie
self.children = {}
self.last = False
class Trie():
def __init__(self):
# Initialising the trie structure.
self.root = TrieNode()
self.word_list = []
def formTrie(self, keys):
# Forms a trie structure with the given set of strings
# if it does not exists already else it merges the key
# into it by extending the structure as required
for key in keys:
self.insert(key) # inserting one key to the trie.
def insert(self, key):
# Inserts a key into trie if it does not exist already.
# And if the key is a prefix of the trie node, just
# marks it as leaf node.
node = self.root
for a in list(key):
if not node.children.get(a):
node.children[a] = TrieNode()
node = node.children[a]
node.last = True
def search(self, key):
# Searches the given key in trie for a full match
# and returns True on success else returns False.
node = self.root
found = True
for a in list(key):
if not node.children.get(a):
found = False
break
node = node.children[a]
return node and node.last and found
def suggestionsRec(self, node, word):
# Method to recursively traverse the trie
# and return a whole word.
if node.last:
self.word_list.append(word)
for a,n in node.children.items():
self.suggestionsRec(n, word + a)
def printAutoSuggestions(self, key):
# Returns all the words in the trie whose common
# prefix is the given key thus listing out all
# the suggestions for autocomplete.
node = self.root
not_found = False
temp_word = ''
for a in list(key):
if not node.children.get(a):
not_found = True
break
temp_word += a
node = node.children[a]
if not_found:
return 0
elif node.last and not node.children:
return -1
self.suggestionsRec(node, temp_word)
for s in self.word_list:
print(s)
return 1
# Driver Code
keys = ["hello", "dog", "hell", "cat", "a",
"hel", "help", "helps", "helping"] # keys to form the trie structure.
key = "hel" # key for autocomplete suggestions.
status = ["Not found", "Found"]
# creating trie object
t = Trie()
# creating the trie structure with the
# given set of strings.
t.formTrie(keys)
# autocompleting the given key using
# our trie structure.
comp = t.printAutoSuggestions(key)
if comp == -1:
print("No other strings found with this prefix\n")
elif comp == 0:
print("No string found with this prefix\n")
# This code is contributed by amurdia
输出:
hel
hell
hello
help
helping
helps
我们该怎样改进这个?
匹配数目可能太大,因此在显示它们时我们必须要有选择。我们可以限制自己仅显示相关结果。根据相关性,我们可以考虑过去的搜索历史,并仅显示搜索次数最多的匹配字符串作为相关结果。
为每个节点存储另一个值,其中isleaf = True,其中包含该查询搜索的命中数。例如,如果搜索“帽子” 10次,那么我们将这10个存储在“帽子”的最后一个节点中。现在,当我们要显示建议时,我们将显示匹配数最高的前k个匹配项。尝试自己实现。