Python – tensorflow.math.real()
TensorFlow 是由 Google 设计的开源Python库,用于开发机器学习模型和深度学习神经网络。 real()用于查找张量的元素实部。
Syntax: tf.math.real(x, name)
Parameter:
- x: It’s the input tensor. Allowed dtype for this tensor are bfloat16, half, float32, float64, int32, int64, complex64, complex128.
- name(optional): It’s defines the name for the operation.
Returns:
It returns a tensor of dtype float32 or float64. .
示例 1:此示例使用实张量。
Python3
# Importing the library
import tensorflow as tf
# Initializing the input tensor
a = tf.constant([1, 2, -3, -4], dtype = tf.float64)
# Printing the input tensor
print('Input: ', a)
# Calculating result
res = tf.math.real(a)
# Printing the result
print('Result: ', res)
Python3
# importing the library
import tensorflow as tf
# Initializing the input tensor
a = tf.constant([1 + 3j, 2-5j, -3 + 7j, -4-8j], dtype = tf.complex128)
# Printing the input tensor
print('Input: ', a)
# Calculating result
res = tf.math.real( a)
# Printing the result
print('Result: ', res)
输出:
Input: tf.Tensor([ 1. 2. -3. -4.], shape=(4, ), dtype=float64)
Result: tf.Tensor([ 1. 2. -3. -4.], shape=(4, ), dtype=float64)
示例 2:此示例使用复张量。
Python3
# importing the library
import tensorflow as tf
# Initializing the input tensor
a = tf.constant([1 + 3j, 2-5j, -3 + 7j, -4-8j], dtype = tf.complex128)
# Printing the input tensor
print('Input: ', a)
# Calculating result
res = tf.math.real( a)
# Printing the result
print('Result: ', res)
输出:
Input: tf.Tensor([ 1.+3.j 2.-5.j -3.+7.j -4.-8.j], shape=(4, ), dtype=complex128)
Result: tf.Tensor([ 1. 2. -3. -4.], shape=(4, ), dtype=float64)