📅  最后修改于: 2023-12-03 14:56:11.119000             🧑  作者: Mango
火炬拆分类分层是一个Python库,旨在为深度学习提供一种更加高级的工具,帮助研究人员和开发人员更快地设计、实现和测试自己的深度学习模型。
该库通过提供一组简单、易用、灵活的接口,极大地简化了深度学习模型的设计、实现和测试。同时,它还提供了许多强大的功能,如数据加载、模型训练、模型评估和模型导出,使用户能够轻松地处理各种深度学习相关的任务。
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms, datasets
from torchvision.models import resnet50
# Load data
train_transforms = transforms.Compose(
[transforms.Resize(256),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
val_transforms = transforms.Compose(
[transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
train_dataset = datasets.ImageFolder(
root='./data/train', transform=train_transforms)
val_dataset = datasets.ImageFolder(
root='./data/val', transform=val_transforms)
train_loader = DataLoader(
train_dataset, batch_size=32, shuffle=True, num_workers=4)
val_loader = DataLoader(
val_dataset, batch_size=32, shuffle=False, num_workers=4)
# Define model
model = resnet50(pretrained=True)
model.fc = nn.Linear(2048, 2)
# Define loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# Train the model
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
inputs, labels = Variable(inputs), Variable(labels)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.data[0]
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' %
(epoch+1, i+1, running_loss/2000))
running_loss = 0.0
# Test the model
correct = 0
total = 0
for data in val_loader:
images, labels = data
outputs = model(Variable(images))
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('Accuracy of the network on the val images: %d %%' %
(100 * correct / total))
# Save the model
torch.save(model.state_dict(), './my_resnet50_model.pth')
火炬拆分类分层是一个非常优秀的Python库,它为深度学习提供了一种更加高级的工具,帮助研究人员和开发人员更快地设计、实现和测试自己的深度学习模型。无论是想要学习深度学习,还是想要用深度学习来解决实际问题,都可以考虑使用该库。